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Abstract

This paper examines the implications of alternative specifications of
risk preferences—including preferences displaying first-order risk aversion
(FORA)—together with alternative assumptions regarding individuals’ elas-
ticities of intertemporal substitution (EIS), for the behavior of a technology
shock-driven business cycle model. The most general version of the model
I consider also includes external habit formation and capital adjustment
costs. I solve the model by applying a version of the Chebyshev collocation
method described by Caldara et al. [4]. Risk preferences matter for some
first moments, because of precautionary capital accumulation, though they
have little impact on model-implied average asset returns. In terms of the
models’ second moment predictions, the assumed EIS and the presence or
absence of habits matters a great deal, while the impact of alternative risk
preferences is negligible. Some curious outcomes obtain in cases where the
EIS is bigger than one or habits are present—two assumptions that have be-
come more common in the literature—including countercyclical consump-
tion in the former case and countercyclical hours worked in the latter case.

Despite their negligible impact on the model dynamics or asset returns,
risk preferences matter a great deal for the perceived welfare cost of aggre-
gate volatility. Under the FORA specification I use, which I argue has some
empirical plausibility, costs are as high as 1.3% of aggregate consumption.
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1 Introduction

In this paper, I take as a starting point intertemporal preferences that allow
a separation of attitudes towards intertemporal substitution (for deterministic
paths) from attitudes towards risk (for timeless gambles). I then consider three
different specifications of risk preferences, and ask whether the choice matters
for business cycle dynamics in variants of the real business cycle (RBC) model
that lies at the core of many current dynamic stochastic general equilibrium
(DSGE) models.

Since business cycle models are neither deterministic nor timeless, I also
consider variation in individuals’ willingness to substitute intertemporally, look-
ing for potential interactions between risk preferences and intertemporal sub-
stitution.

The intertemporal preferences that result encompass the standard, time-
and state-separable expected utility form, and two variants of non-time-separable
preferences of the Kreps-Porteus [23] variety. One variant—the more standard,
what one commonly thinks of as ‘Epstein-Zin (EZ) preferences’—collapses to
constant relative risk aversion expected utility in timeless settings (gambles
over constant levels of consumption and leisure). The other, described in detail
below, embodies non-state-separability and first-order risk aversion (FORA),
and also owes to Epstein and Zin [12]. The latter two cases are calibrated to
higher levels of risk aversion than is common in the business cycle literature.1

The business cycle model, in the most general form I consider, includes
both external habit formation in consumption and capital adjustment costs. I
also examine a stripped-down version of the model in which those frictions are
absent. The model is driven by a single shock to total factor productivity (TFP).

The model behavior I am interested in includes implications for first mo-
ments, second moments and impulse responses, and the welfare costs asso-
ciated with aggregate volatility. In terms of first moments, the two non-EU
preference specifications generate noticeable amounts of precautionary capital
accumulation, especially the specification incorporating first-order risk aver-
sion. In contrast to results obtained in endowment economies ([12]) or produc-
tion economies with fixed labor supply ([20]), risk preferences, intertemporal
substitution and the presence or absence of habits make little difference for the
average equity risk premia the model generates.

The model’s second moment implications are essentially independent of
the specification of risk preferences, consistent with the previous finding of
Tallarini [35] in a more specialized model. Impulse responses are, in fact, vir-
tually indistinguishable across the three risk preference specifications I use.
The choices that do matter, significantly, for second moments are the assumed
elasticity of intertemporal substitution (EIS) and the presence or absence of
habit formation. The use of an EIS greater than one is now common—and
necessary—in models that seek to resolve asset pricing puzzles by allowing for

1I argue in section A.2 that the first-order risk averse calibration is, nevertheless, empirically
plausible.
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long-run consumption risk (e.g., [1] or [10]), but has not been much-analyzed
in business cycle models. In the stripped-down version of the model in this
paper—the standard neoclassical stochastic growth model—assuming an EIS
in excess of one can lead to countercyclicality of consumption. The model with
habits, for EIS both greater or less than one, can generate countercyclical be-
havior in labor hours. The habit model also produces much less amplification
of TFP shocks, as compared to amplification in the no-habit model.

In terms of the welfare cost of aggregate volatility, they range from nil un-
der expected utility to 1.3% of consumption for the FORA specification of risk
preferences. The latter number is robust to variation in the EIS and the pres-
ence or absence of habits.

Other papers have examined the business cycle properties of models featur-
ing non-standard risk preferences. Campanale et al., for example, look at pref-
erences that exhibit “disappointment aversion” (as in Gul [16]) in a production
economy with capital adjustment costs. A version of their model, calibrated
to match experimental evidence on the degree of disappointment aversion and
aggregate data on the volatility of output and consumption growth, is able to
match well the first and second moments of asset return data. Campanale et al.
do not incorporate elastic labor effort, however, and the results below suggest
this feature is important for determining whether a production economy can
generate plausible business cycle behavior and plausible asset returns.

The paper most akin to this one is that of Tallarini [35]. Working in a stan-
dard RBC framework, but with recursive preferences of the Epstein-Zin [11]
form, Tallarini shows that when the EIS is equal to one, the intertemporal pref-
erences that result are formally analogous to the type of objective functions
used in the literature on risk-sensitive optimal control (see [39])—i.e., the so-
cial planner’s problem that results takes the form of a discounted linear ex-
ponential quadratic Gaussian control problem. In contrast to standard linear-
quadratic control, risk-sensitive control does not entail certainty equivalence—
decision rules, and not just value functions, may depend on the variances of
the model’s shocks. Tallarini uses methods developed by Hansen and Sargent
[18] to calculate approximate solutions to the model. He then shows that the
model’s business cycle predictions—relative volatilities and correlations—are
little changed when the coefficient of relative risk aversion is increased from
1 to 100, though this has a significant impact on the model’s welfare impli-
cations. The analysis here differs from Tallarini’s in a couple important ways.
First, since I solve the model using Chebyshev collocation, I am able to consider
EIS values different from one; as noted above, variation in the elasticity of in-
tertemporal substitution has important effects on the model’s dynamics. Also,
the model here incorporates habit formation and capital adjustment costs, fea-
tures which have become common in many DSGE models.
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2 Model

The model is the standard real business cycle core of many recent DSGE mod-
els.2 I will describe the model in the most general form I employ—including
external habit formation and capital adjustment costs—though for several of
the numerical exercises, I will shut those channels down.

A unit measure of identical agents have preferences over consumption and
leisure given by the recursive form

Ut = [(1− β)((Ct − φHt)
ψ(1− Nt)

1−ψ)ρ + βµt(Ut+1)
ρ]1/ρ

where Ct is consumption at date t, Ht is the consumption habit stock, Nt is the
fraction of the unit time endowment devoted to work, and µt( · ) is a linearly
homogeneous certainty equivalent operator conditional on information at date
t. This expression holds for ρ < 1 and ρ 6= 0. When ρ = 0, the recursion takes
the form

Ut = ((Ct − φHt)
ψ(1− Nt)

1−ψ)1−βµt(Ut+1)
β.

The habit stock is assumed to evolve (externally) according to

Ht+1 = (1− δh)Ht + Ca
t .

In the last expression, we understand Ca
t to denote aggregate consumption—

identical to individual consumption in equilibrium, but taken as given by in-
dividual agents. (The artifice here is that our representative agent is assumed
atomistic, but identical to all other atomistic agents.)

The parameter ρ in the agent’s utility function governs attitudes towards
intertemporal substitution along constant paths of consumption and leisure.
In particular, ε ≡ 1/(1− ρ) is the elasticity of intertemporal substitution (EIS)
with respect to the composite good (“felicity”) (C − φH)ψ(1 − N)1−ψ. This
differs from the elasticity of intertemporal substitution in consumption, which
is given by 1/(1− ρψ). For a given value of ψ ∈ (0, 1), the EIS for felicity and
the EIS for consumption are both equal to 1 at ρ = 0, less than 1 for ρ < 0 and
greater than 1 for ρ > 0. The parameter ψ governs the steady state allocation
of time between labor effort and leisure. Note that the agent’s utility will be
homogeneous of degree ψ in (equilibrium) consumption.

Outside of the case where the EIS is unity, intratemporal preference that are
non-separable in consumption and leisure are essential for consistency with
balanced growth—see [21] or [2].

The certainty equivalent operator µt takes the form

µt(Ut+1) = Êt[U1−θ
t+1 ]

1/(1−θ) (1)

where θ ≥ 0. In the case of θ = 1, this expression becomes µt(Ut+1) =
exp[Êt ln(Ut+1)]. The hat over the expectations operator Et denotes a possible

2See, for example, the New Keynesian DSGE models of Goodfriend and King [14], Erceg et al.
[13], or Smets and Wouters [32].
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distortion in the subjective probabilities used (relative to the objective proba-
bilities implied by the stochastic process for Ut). In particular, we allow for the
sort of distorted probabilities associated with both Quiggin’s [27] “anticipated
utility” theory and Yaari’s [40] “dual theory” of choice under uncertainty.

Quiggin’s and Yaari’s theories incorporate rank dependence—their certainty
equivalents depend on the ranking of outcomes from worst to best. Suppose
that a random variable ξ takes on values in {ξ(1), ξ(2), . . . , ξ(k)}, ξ(1) ≤ ξ(2) ≤
· · · ≤ ξ(k), with (objective) probabilities p(1), p(2), . . . , p(k)). Then, for γ ∈
(0, 1], the Quiggin-Yaari expectation of ξ is given by

Ê[ξ] =
k

∑
i=1
{(

i

∑
h=1

p(h))γ − (
i−1

∑
h=1

p(h))γ}ξ(i)) (2)

where ∑−1
h=1 p(h) ≡ 0. For the case of two outcomes, for example, this ex-

pectation in effect replaces the probability of the worse outcome, p(1), with
p(1)γ—which exceeds p(1) if γ < 1—and the probability of the better out-
come, p(2) = 1− p(1) with 1− p(1)γ.

Risk preferences of the Quiggin/Yaari form fall under the more general
heading of risk preferences that display ‘first-order risk aversion’: the risk
premia they generate, over timeless gambles, are proportional to the gamble’s
standard deviation, rather than its variance. In the context of a Lucas tree econ-
omy, Epstein and Zin [12] explored the extent to which preferences of this sort
provide a resolution to the equity premium puzzle.

Section A.1 of the appendix provides some background on this form for risk
preferences.

When θ 6= 0 in (1) and γ 6= 1 in (2), µt(U) incorporates aspects of pref-
erences featuring both first-order risk aversion and more standard constant
relative risk aversion (CRRA). If γ = 1, we are in the case of Epstein-Zin, or
Epstein-Zin/Weil, preferences. If, further, θ = 1/ε—i.e., if θ = 1− ρ—we ob-
tain the case of expected utility (EU).

Agents face a sequence of budget constraints of the form

WtNt + RtKt ≥ Ct + Xt

where Xt denotes gross investment—forgone consumption allocated to capital
accumulation—and Wt and Rt are the real wage and rental rate. An agent’s
stock of capital evolves according to

Kt+1 = (1− δk)Kt + Ktg(Xt/Kt),

where g( · ) is a concave adjustment cost function (to be described in more de-
tail below).

A representative firm operates a constant returns to scale production tech-
nology of the Cobb-Douglas form

Yt = AtKα
t N1−α

t ,

5



where Yt is output available for consumption or gross investment, and At is a
stochastic process for total factor productivity.3 The competitive equilibrium
wage and rental rates will be given by the marginal products of labor and cap-
ital, Wt = (1− α)AtKα

t N−α
t and Rt = αAtKα−1

t N1−α
t .

The economy’s resource constraint is

Yt ≥ Ct + Xt.

The TFP process At is assumed to contain a deterministic trend component—
i.e., At = ηtat. Quantities (apart from labor hours) and the real wage rate will
grow, on average, at the rate η. To render the model stationary, we deflate those
variables by {ηt}, and denote the deflated variables by lower-case letters—i.e.,
ct = Ct/ηt, xt = Xt/ηt, etc.

With these definitions, the recursive representation of the agent’s utility
process takes the form

u = [(1− β)[(c− φh)ψ(1− N)1−ψ]ρ + β̂µ(u′ | Ω)ρ]1/ρ

for ρ 6= 0, or
u = ((c− φh)ψ(1− N)1−ψ)1−βµ(u′ | Ω)β

for ρ = 0, where β̂ = βηψρ and Ω denotes the agent’s conditioning information.
The budget constraint becomes

wN + Rk ≥ c + x,

while the equations describing the evolutions of the capital and habit stocks
are modified as follows

ηk′ = (1− δk)k + kg(x/k) (3)

ηh′ = (1− δh)h + ca. (4)

Finally, the economy-wide production constraint is

y = akαN1−α ≥ c + x. (5)

3 Equilibrium: Characterization and solution

3.1 Characterization

The model’s equilibrium paths solve a restricted social planner’s problem—
maximizing utility subject to the economy’s technology and resource constraints,
and the evolution equation for the physical capital stock, taking the evolution
of the habit stock as given. After obtaining the intratemporal and intertemporal
first-order conditions for that problem, equality between ct and ca

t is imposed.

3Here and throughout, where there is no possibility of confusion, we suppress the superscript
a on aggregate quantities.
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The intratemporal first-order condition is

1− ψ

ψ

c− φh
1− N

= (1− α)akαN−α (6)

Let muc ≡ (c − φh)ψρ−1(1 − N)(1−ψ)ρ, which is the marginal utility of cur-
rent consumption (divided by (1− β)U1−ρ); mpk ≡ αakα−1N1−α, the marginal
product of capital; and z ≡ x/k, the investment rate. Also, let

Dg(z) ≡ ∂G(z)/∂z,

as we reserve the prime symbol ( ′ ) to denote next-period values of the various
model variables. With this notation, the intertemporal first-order condition is
an Euler equation of the form

η
muc

Dg(z)
= β̂µ(v′ | Ω)θ+ρ−1×

Ê[(v′)1−ρ−θmu′c(mp′k +
1− δk + g(z′)− z′Dg(z′)

Dg(z′)
) | Ω]. (7)

In the last expression, v denotes the agent’s value function, evaluated at equi-
librium quantities, which we could write more explicitly as v(a, k, h).

v satisfies the following Bellman equation

v(a, k, h) = [(1− β)[(c− φh)ψ(1− N)1−ψ]ρ + β̂µ(v(a′, k′, h′) | Ω)ρ]1/ρ, (8)

when c, x and N are optimally chosen, given the state (a, k, h), the economy’s
production constraint, and the evolution equation for k, and when h′ is given
by ηh′ = (1− δh)h + c.

A solution to the model consists of a value function v(a, k, h), and deci-
sion rules for the labor input, N(a, k, h), consumption, c(a, k, h), and gross in-
vestment, x(a, k, h), such that at all (a, k, k): N(a, k, h) and c(a, k, h) satisfy (6);
N(a, k, h), c(a, k, h), and x(a, k, h) satisfy the resource constraint (5); and, when
k′ and h′ are derived from (3) and (4), given c(a, k, h) and x(a, k, h), these map-
pings satisfy the Euler equation (7) and the Bellman equation (8).

If the economy had a conditionally risk-free asset, we could calculate its
rate of return, R f (a, k, h), in standard fashion:

1
1 + R f (a, k, h)

= η−1 β̂µ(v′ | Ω)θ+ρ−1Ê[(v′)1−ρ−θ mu′c
muc

| Ω]

When θ = 1− ρ and γ = 1 (so Ê = E), this reduces to the familiar expression
relating the risk-free rate to the expected growth rate of the marginal utility of
consumption.

For comparison with the risk-free rate, we take the model’s “equity” return
to be the return on a marginal unit of gross investment; the expected risky
return is then

1 + Re(a, k, h) = E[Dg(z)(mp′k +
1− δk + g(z′)− z′Dg(z′)

Dg(z′)
) | Ω]

The model’s equity premium is then Re(a, k, h)− R f (a, k, h) at state (a, k, h).
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3.2 Solution method

Our solution method follows the Chebyshev polynomial collocation method
described by Caldara et al. [4].

As in their approach, consideration of the conditions describing a solution
to the model reveals that a solution really consists in two mappings, a value
function v(a, k, h) and a labor supply decision rule N(a, k, h). Given an arbi-
trary N(a, k, h), decision rules for consumption and gross investment can be
backed out of the purely intratemporal conditions (6) and (5). Those decision
rules—call them c(a, k, h)and x(a, k, h)—imply transition laws for the two en-
dogenous states, k and h, according to

k′(a, k, h) = (1− δk)k + kg(x(a, k, h)/k)

and
h′(a, k, h) = (1− δh)h + c(a, k, h).

These decision rules and transition laws are feasible and satisfy the agent’s
intratemporal optimality condition. The rules that actually solve the model are
then found by further requiring that the Euler equation and Bellman equation
hold at all (a, k, h).

Our solution method approximates the labor decision rule and value func-
tion with Chebyshev polynomials. The polynomial coefficients solve the sys-
tem of nonlinear equations determined by the Euler equation and Bellman
equation, when those equations are evaluated at a finite number of polynomial
roots (the collocation points).

As in Caldara et al., the exogenous TFP process a is assumed to be given by
a finite-state Markov chain, and the collocation points along the a dimension
are assumed fixed at the values of the Markov chain states. That is, for all t, we
assume at ∈ {a1, a2, . . . , a#a}, and there is a #a× #a matrix P with

Pr{at+1 = aj | at = ai} = Pij.

I then treat the labor decision rule and value function as vector-valued func-
tions at each point (k, h), Ni(k, h) = N(ai, k, h) and vi(k, h) = v(ai, k, h). For
each i, Ni(k, h) and vi(k, h) are approximated as tensor products of Chebyshev
polynomials in k and h. Precisely,

Ni(k, h) ≈
Ok

∑
l=0

Oh

∑
m=0

Di
N(l, m)Tl(ι(k))Tm(ι(h)) ≡ N (k, h; Di

N),

where Tl( · ) is the lth order Chebyshev polynomial of the first kind; {Di
N(l, m) :

l = 0, 1, . . . ON , m = 0, 1, . . . Oh} are the polynomial coefficients; and ι( · ) maps
the domains of k and h into [−1, 1]. Likewise,

vi(k, h) ≈
Ok

∑
l=0

Oh

∑
m=0

Di
v(l, m)Tl(ι(k))Tm(ι(h)) ≡ V(k, h; Di

v).
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While in principle, the polynomial orders Ok and Oh could differ (and differ
across the approximations N and V), in practice, I use a single polynomial
order, O, for both the k and h dimensions, for both N and V .4

While ocular tests aren’t necessarily conclusive, the model’s impulse re-
sponses (described below) changed only negligibly in moving from a polyno-
mial order of O = 6 to O = 7, while the time required to solve the model did
begin to increase steeply at the point. Hence, I opted for a choice of O = 6
in all the numerical experiments.5 A tensor product of 6th-order polynomials
contains 72 terms, so an approximation with O = 6 entails determining #a× 49
coefficients for each of N and V . With #a = 9 (a choice described in the next
section), this means determining 2× 9× 49 = 882 coefficients for the full model
(when habit formation is present).

With the approximating decision rules in hand, sequences of model quan-
tities and prices can be produced simply by feeding in TFP sequences together
with initial values for k and h.

4 Parameter values

I assign parameter values through a mix of calibration and direct specification
(with some appeal to existing literature). The parameters governing intertem-
poral substitution and risk aversion, ρ, γ and θ, are all set directly, without a
view toward matching any particular moments, since our numerical experi-
ments will consist mostly in varying these three parameters.

Capital’s share in the Cobb-Douglas production function is set to α = 0.4
and the capital depreciation rate, δk is set directly to 10 percent per year. The
growth rate of the deterministic trend in TFP, η, is set to 1.8 percent per year.
(The model’s period is one quarter.)

The habit formation parameters δh and φ are set somewhat arbitrarily. The
habit depreciation rate is set to δh = 1, so ht = ct−1. I set φ = 0.5. One
sees higher values in the literature, though so far as I can tell only in models
solved via linear approximation methods. For values much above φ = 0.5, our
Chebyshev collocation algorithm typically could not find coefficient matrices
to simultaneously satisfy the Euler and Bellman equations at all collocation
points.6 In any case, φ = 0.5 seems in line with the available evidence, for
example Naik and Moore [25].

I also consider the no-habit case of φ = 0.
Capital adjustment costs of the form used here, where k′ depends on kg(x/k),

have been used by Baxter and Crucini [3], Jermann [20], and others. In some

4All the MATLAB codes for this paper are available at http://www.jimdolmas.net/

economics.
5The robustness of all the results to this choice should be a subject of further study.
6This obviously needs further analysis. Since I don’t have an existence result, I do not wish

to make too much out of this finding, but on the face of it, it would not be that surprising that a
model where utility depends on ct− φht, where the technology is subject to TFP shocks, and where
investment is not reversible, might fail to have a solution for φ too large.
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of those models, solved by linear approximation, calibration only requires an
elasticity of the first derivative of the adjustment cost function (which is the
inverse of the elasticity of the investment rate z with respect to Tobin’s Q). Our
approach here requires a functional form for g. The desiderata are that g should
be (weakly) concave, and it should be possible to calibrate it so that there are no
adjustment costs in the model’s deterministic steady state—i.e., that g(z) = z
and Dg(z) = 1 should be possible for an appropriate choice of parameters. To
that end, following Jermann [20], I specify

g(z) = (b0/b2)zb2 − b1

for b0, b1, b2 > 0, b2 ≤ 1. The two steady state conditions g(z) = z and Dg(z) =
1 cannot, of course, pin down all three parameters. I therefore set the curvature
parameter b2 and, given the steady state investment rate, call it z̄, set b0 = z̄1−b2

and b1 = z̄/b2.
I consider two cases for b2, b2 = 1 (no adjustments costs, in conjunction

with no habit formation) and b2 = 0.5 (high adjustment costs). The latter value
implies an elasticity of the rate of investment with respect to Tobin’s Q of 2.

Given these choices, there remain two parameters to select—ψ, the relative
weight of consumption in felicity, and β, the utility discount factor. These are
chosen to give a plausible consumption share of output in the deterministic
steady state (73 percent) and a plausible allocation of time to work effort (30
percent).7 Note that in the deterministic steady state,

h̄ =
c̄

η − 1 + δh

so that

c̄− φh̄ =

(
1− φ

η − 1 + δh

)
c̄ ≡ Φc̄.

The agent’s intratemporal first-order condition (6) then implies

1− ψ

ψ
= (1− α)

1− N̄
N̄

1
Φsc

,

so there is a unique value of ψ consistent with given targets for N̄ and sc (and
the previous parameter choices). Likewise, given that there are no adjustment
costs in the steady state, a target for sc implies a target for the steady state
capital-output ratio. The steady state version of the agent’s Euler equation—

η = βηρψ

(
α

k̄/ȳ
+ 1− δk

)
—then determines a unique value of β consistent with these targets (and the
other parameter choices).

7 N̄ = 0.3 is a standard choice, and c̄/ȳ ≡ sc = 0.73 is consistent with the average GDP share of
private consumption of nondurables and services plus government consumption for the US over
the last 50 years.
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The value of β depends on the assumed elasticity of intertemporal substitu-
tion, ε. In the numerical experiments I report on below, I consider two values
for ε, ε = 0.5 and ε = 15. While the latter value may seem high, it yields an
intertemporal elasticity of substitution in consumption on the order of 1.3 in
the habit model.

Table 1 contains a summary of the parameter values I employ.

Value Remarks
Technology parameters:

α 0.4 Standard
δk 0.0127 10% annual
η 1.0045 1.8 % annual

Habit formation parameters:
φ 0.5 Habit strength
δh 1 ht = ct−1

Capital adjustment cost function:
b0 0.1312 g(z̄) = z̄, Dg(z̄) = 1
b1 0.0172 g(z̄) = z̄, Dg(z̄) = 1
b2 0.5 Q elasticity of z = 2

Parameters set indirectly:
ψ 0.2075 Gives N̄ = 0.3, sc = 0.73

β (ε = 0.5/ε = 15) 0.9927/0.9910 Gives k̄ such that sc = 0.73
If no habit or adjustment costs:

ψ 0.3427 Gives N̄ = 0.3, sc = 0.73
β (ε = 0.5/ε = 15) 0.9933/0.9904 Gives k̄ such that sc = 0.73

Table 1: A summary of model parameter values

Lastly, I calibrate the parameters of the Markov chain describing the sta-
tionary part of TFP using Rouwenhorst’s [30] method to approximate an AR(1)
process, in logarithms, with persistence parameter 0.95 and conditional stan-
dard deviation 0.07 (the numbers used by Cooley and Prescott [9]).8 I assume
the Markov chain has nine states. After all other parameters are set, I fix the
unconditional mean of a so that output is equal to one unit in the deterministic
steady state (which replaces at with E(at) at all dates).

Note that, set in this manner, the mean level of stationary TFP a does not
depend on the parameter choices for intertemporal substitution, risk aversion,
habit or capital adjustment costs. Experiments where any of these parameters
are varied will thus take place using technology with the same average level of
TFP.

8Kopecky and Suen [22] show that Rouwenhorst’s method is superior to the more-common
method of Tauchen [36] for approximating highly persistent AR processes.
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5 Results

5.1 Features of interest

There are a number of features of the model output we could examine. Except
for the impulse responses, the construction of which I describe momentarily,
all the characterizations I will make are based on a draw of 10,100 Markov
chain states consistent with the calibrated transition matrix P. Physical capital
and the habit stock (when present) are initialized at their deterministic steady
state values, but I discard the first 100 observations of all simulated series. The
sequence of Markov chain states is the same in all the numerical experiments
(again, apart from the impulse responses).

5.1.1 Means

First moments typically aren’t that interesting in models of this sort—means of
variables in the stochastic economies rarely depart by much from their values
in the deterministic steady state, values which the models have typically been
calibrated to reproduce.

This is not the case when first-order risk aversion is present, as agents en-
gage in a significant amount of precautionary capital accumulation. This be-
havior is, in fact, one of a small number of aspects in which the model’s behav-
ior under first-order risk aversion is distinguished from risk aversion which is
very high, but second-order (γ = 1 but θ very large).

From an asset-pricing standpoint, this is not a positive for first-order risk
averse preferences: the higher long-run capital stocks they generate push down
the rental rate on physical capital, hence also the average equity return.

5.1.2 Second moments

Obviously, we are interested in the standard second-moment measures, which
I calculate after applying the Hodrick-Prescott filter to the simulated, logged
model data (after restoring deterministic trends to previously deflated vari-
ables).

I calculate the standard measures of volatility and volatility relative to out-
put, as well as volatility relative to the TFP shock process. Cross-correlations
of variables with output are of particular interest, since these—while gener-
ally not sensitive to risk aversion—are sensitive with respect to assumptions
about the elasticity of intertemporal substitution (a high enough EIS makes
consumption countercyclical) and the presence or absence of habits (habit can
make labor effort countercyclical).

For brevity’s sake, I omit results on the autocorrelation of output (or phase
relations between output and other variables). As in the standard RBC model,
output here, regardless of assumptions about risk aversion, simply inherits the
dynamics of the TFP shock (see, for example, [38] on the standard RBC model).
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5.1.3 Welfare

Since one can calculate the welfare cost of volatility in different ways, it is im-
portant to be precise about whatever calculation is being made. In this paper, I
use two welfare measures. Let (k̄, h̄) denote physical capital and the habit stock
in the deterministic steady steady, and (k̂, ĥ) their mean values in the stochas-
tic economy. Recall that the deterministic economy is identical to the stochastic
economy, with the exception of the TFP process {at} being replaced with its
mean value.

I then compare µ[v(a, k̂, ĥ)], the unconditional certainty equivalent lifetime
value of an agent in the stochastic economy, who holds the long-run average
capital stock and habit for the stochastic economy, to two values: one is the
lifetime value of an agent in the deterministic economy, holding (k̂, ĥ)—call it
vD(k̂, ĥ)—and the other is the lifetime value of an agent in the deterministic
economy holding (k̄, h̄), vD(k̄, h̄).

µ[v(a, k̂, ĥ)] is the certainty equivalent value of an agent who parachutes
into the stochastic economy, holding average stocks for the stochastic economy,
but unaware of the current TFP state. I then ask what across-the-board increase
in consumption, at all dates and states, would make the agent indifferent be-
tween making that parachute drop and residing in the deterministic economy,
holding either the average stocks appropriate to the stochastic economy or the
steady state stocks of the deterministic economy. Precisely, because lifetime
utility is homogeneous of degree ψ in (equilibrium) consumption, I calculate
the values λ1 and λ2 that satisfy:(

1 +
λ1

100

)ψ

µ[v(a, k̂, ĥ)] = vD(k̂, ĥ)

and (
1 +

λ2

100

)ψ

µ[v(a, k̂, ĥ)] = vD(k̄, h̄).

5.1.4 Impulse responses

I report a few impulse responses to TFP shocks, for different variants of the
model, below. Given that the shock process driving the model is discrete, the
calculation of impulse responses merits some discussion.

Similar to the approach in Campanale et al. [5], I run 10,000 simulations
of 120 periods each, each simulation starting from the average stocks k̂ and ĥ,
and from the lowest TFP level, a(1). I then calculate the average path for each
variable, over the 10,000 runs. For any variable b, letting {bt : t = 1, . . . 120}
denote the average path and b̂ the variable’s long-run mean value, the numbers
I plot are {100 log(bt/b̂) : t = 1, . . . 120}.

Of particular interest is the impulse response of hours worked in some vari-
ants of the habit model: hours can actually rise at impact in response to a neg-
ative shock. With regard to the role of risk preferences, though, we’ll see that

13



the model’s impulse responses change only negligibly as we make significant
changes in the agent’s risk attitudes.

5.2 No habits, no adjustment costs

Some features of the model can be illustrated readily, abstracting from habit
formation and capital adjustment costs (setting φ = 0 and b2 = 1).

I consider two values of the elasticity of intertemporal substitution, ε =
1/(1 − ρ), ε = 0.5 and ε = 15. This range may seem wide, but the former
implies an EIS in consumption of roughly two-thirds, the latter an EIS in con-
sumption of roughly 1.3 (or 1.5, if no habit is present).

Why consider EIS’s greater than one? Models with an EIS greater than one
have, until recently, been little-studied—most likely because justifying an EIS
in consumption even as big as one has proven difficult, empirically.9 Also, to
the extent that earlier work assumed expected utility—so that θ = 1/ε—higher
values of the EIS necessitated lower levels of risk aversion.

The assumption of an EIS greater than one has become standard, though, in
at least one strand of the literature, that studying models of “long-run risk” (for
example [1] or [10]). In fact, for those models an EIS in consumption around
1.5 is standard, though to my knowledge no one has studied the ramifications
of this assumption in a long-run risk model with elastic labor supply. While
our model here is not one featuring long-run risk in consumption or TFP, its
behavior when the EIS in consumption is around 1.5 may still be of interest to
that literature.

In combination with those two values for ε, I consider three cases for the
parameter pair (θ, γ) governing risk aversion. Case 1 is expected utility (EU):
θ = 1/ε and γ = 1. Case 2 is high constant relative risk aversion, as in Tallarini
[35]: θ = 100 and γ = 1. Finally, case 3 incorporates first-order risk aversion:
γ = 0.9 and θ = 1.

Table 2 presents some first moment results for the no-habit economy, in par-
ticular a measure of precautionary capital accumulation, and average returns
on physical capital and the hypothetical riskless asset, defined above in section
3.1. Precautionary capital accumulation is noticeably higher under first-order
risk aversion, particularly in the low-ε case, where the long-run average capital
stock exceeds the deterministic steady state stock by 1.4%.

Note that average asset returns vary only very slightly with changes in risk
aversion—consistent with the findings in Tallarini [35]—or, for that matter, in-
tertemporal substitution. Equity risk premia are either nil or even slightly neg-
ative in all specifications. Even under high risk aversion, the ability to smooth
the effects of shocks through capital accumulation—and to smooth variations
in marginal utility through variation in leisure hours—essentially undoes the
results, for an endowment economy, found in Epstein and Zin [12].

9See Guvenen [17] for a discussion of issues in the measurement of the EIS, and a potential
resolution to the conflict between studies finding near-zero values of the EIS, using aggregate con-
sumption data, and business cycle models that typically assume an EIS around 1.0.
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ε = 0.50
%(k/k̄) Re R f

EU, θ = 1/ε, γ = 1 −0.0675 5.2054 5.2019
High CRRA, θ = 100, γ = 1 0.7372 5.1614 5.2063
FORA, θ = 1, γ = 0.9 1.4267 5.1560 5.2019

ε = 15
%(k/k̄) Re R f

EU, θ = 1/ε, γ = 1 −0.0386 5.2037 5.2007
High CRRA, θ = 100, γ = 1 0.5568 5.1711 5.1965
FORA, θ = 1, γ = 0.9 0.8359 5.1560 5.2007

Table 2: Some first moments, no-habit model. Column 1, %(k/k̄), gives the
excess, in percent, of average capital in the stochastic model compared to the
deterministic steady state capital stock. Average asset returns are in annualized
percent.

Some second moment implications are given in Table 3. As noted above, for
these calculations, I reintroduce the linear time trend ηt to the deflated model
variables, then apply the Hodrick-Prescott filter to the natural logarithms of all
the simulated series.

The important features to note in Table 3 are, firstly, the robustness of the
numbers (for a given ε) across the different specifications of risk preferences,
and secondly, the dramatic difference in the moments (for any risk preference
configuration) across the two values of ε. Of particular note is the negative
contemporaneous correlation between logged output and consumption, in the
case where ε is bigger than one.

The countercyclical behavior of consumption in the high EIS case is ap-
parent in the model’s impulse responses for consumption, shown in the two
panels of figure 1. The top panel plots the impulse responses of consumption
in the low EIS case for all three risk preference cases—the paths overlap to the
point of being indistinguishable. The lower panel of the figure shows the im-
pulses responses in the high EIS case. In that case, consumption is above its
long-run average for two quarters, before ultimately falling to a level nearly 5
percent below its long-run average, then converging gradually back.10

We’re also interested in the extent to which the model provides any amplifi-
cation of the shocks fed into it. For the lower EIS value, the standard deviation
of logged output is roughly 1.40 times the standard deviation of the TFP shock,
for all risk parameter settings. For the larger EIS value—consistent with the

10The non-separability of utility in consumption and leisure appears to be important here. Us-
ing the parameters ψ and ρ, and the steady state labor effort N̄, one can combine the impulse
responses for consumption and hours (not shown) to obtain an approximate impulse response
for the marginal utility of consumption. Despite the increase in consumption during the first two
quarters, the marginal utility of consumption—which depends positively on leisure—definitely
rises in response to the shock.
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Figure 1: Impulse responses for consumption in the no-habit model. See sec-
tion 5.1.4 for details on the calculations involved.
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greater volatility of hours reported in table 3—we see more amplification, with
the standard deviation of output roughly 1.85 times the standard deviation of
the TFP process.

While attitudes toward risk have only a negligible impact on the model’s
second moments, they have a very significant effect on the perceived cost of
aggregate volatility. Table 4 reports the welfare measures λ1 and λ2 defined in
section 5.1.3. Under expected utility—as we’ve come to expect from Lucas’s
[24] calculations—the agent’s welfare gain from eliminating volatility is essen-
tially nil. In the high CRRA case, the gains are in the range of 0.3− 0.4% of
consumption, which would be on the order of $40 billion annually, if we con-
sider current US consumption expenditures of around $10 trillion annually.

ε = 0.50
λ1 λ2

EU, θ = 1/ε, γ = 1 0.01 0.02
High CRRA, θ = 100, γ = 1 0.42 0.29
FORA, θ = 1, γ = 0.9 1.30 1.05

ε = 15
λ1 λ2

EU, θ = 1/ε, γ = 1 −0.01 −0.00
High CRRA, θ = 100, γ = 1 0.41 0.31
FORA, θ = 1, γ = 0.9 1.30 1.14

Table 4: Welfare cost of fluctuations in the no-habit model. The compensation
measures λ1 and λ2 are percentage increases in consumption at all dates and
states, defined in section 5.1.3.

In the FORA case, the gains are roughly triple in size, for either EIS value.
Again using $10 trillion as the value of aggregate consumption, the compen-
sating differentials shown in table 4 for the FORA cases would be in the range
of $110− $130 billion, or nearly $1,000 per person per year.

Does the FORA specification with γ = 0.9 represent a ridiculously extreme
level of risk aversion? In the appendix, section A.2, I give some calibration
examples which argue that γ = 0.9 (with θ = 1) is, in fact, roughly consistent
with some of the observed behavior of individuals in insurance markets.

5.3 The full model with habits and adjustment costs

I now consider the full model with external habit formation (φ = 0.5, δh = 1)
and capital adjustment costs (b2 = 0.5). Table 5, analogous to Table 2, gives
some select first moments from the simulated model data.

Similar to the no-habit version of the model, precautionary capital accumu-
lation is greater when the elasticity of intertemporal substitution is set to its
lower value, and at that setting, FORA risk preferences generate the greatest
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ε = 0.50
%(k/k̄) Re R f

EU, θ = 1/ε, γ = 1 −0.1130 5.2661 5.2064
High CRRA, θ = 100, γ = 1 0.0586 5.2572 5.2078
FORA, θ = 1, γ = 0.9 0.4659 5.2364 5.2064

ε = 15
%(k/k̄) Re R f

EU, θ = 1/ε, γ = 1 −0.0998 5.2498 5.2029
High CRRA, θ = 100, γ = 1 −0.0652 5.2480 5.2014
FORA, θ = 1, γ = 0.9 −0.0800 5.2488 5.2029

Table 5: Some first moments, model with habit formation and capital adjust-
ment costs. Column 1, %(k/k̄), gives the excess, in percent, of average capital
in the stochastic model compared to the deterministic steady state capital stock.
Average asset returns are in annualized percent.

amount of such accumulation. Nevertheless, with the long-run average capital
stock in the stochastic economy just about 0.5% bigger than the deterministic
steady state stock, the precautionary effect under habits is much weaker. For
the higher EIS value of ε = 15, long-run average capital stocks under all risk
specifications are slightly lower than the deterministic steady state stock.

As far as asset returns are concerned, the second and third columns of Table
5 show that, again, neither risk preferences nor intertemporal substitution have
much of an effect on either the expected capital return or the risk-free rate.
Equity risk premia are negligible, in contrast to Jermann’s [20] results in a fixed-
labor-supply model otherwise similar to the model here.

Movements in labor effort are a key feature of the model with habits and
adjustments, as illustrated in Table 6, which replicates for the full model the
second-moment calculations for the no-habit model reported in Table 3. Sev-
eral salient features of the model’s second moments are worth noting:

• The model with habit formation and adjustment costs has much weaker
amplification than the does the model without those features, as is appar-
ent from the standard deviations of ln(Y) across all specifications. In fact,
where the standard deviation of logged output was 1.40− 1.85 times the
standard deviation of logged TFP in the stripped-down model, here the
ratio is essentially one across all specifications of attitudes towards risk
and intertemporal substitution.

• The volatility of labor hours—much lower in the habit model—is proba-
bly key to the first observation. That hours should be less volatile in the
model with habits is, at least, intuitive: a period with low TFP may be a
bad time to work, but hours cannot fall too much if consumption is to be
maintained above the habit level.
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• Hours are now only weakly correlated with output, with contemporane-
ous correlations of just over 0.5. (Below, we’ll see an impulse response
plot that suggests this contemporaneous correlation would actually be
negative if we were characterizing linearly de-trended or first-differenced
data, rather than HP-filtered data.)

• The specification of risk attitudes again has a negligible impact on the
model second moments.

• Now, in contrast to what we saw in the stripped-down model, variation
in the EIS also has a negligible impact on the results.

Figure 2 shows the model impulse responses for labor effort, for our two
values of ε and all three specifications of risk preferences. As was the case in
the stripped-down model, here again the series for each of the cases of risk
preferences lie virtually on top of one another in each panel of the figure.

0 20 40 60 80 100 120
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Impulse responses for labor hours, EIS = 0.5, different types of risk aversion

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5
Impulse responses for labor hours, EIS = 15, different types of risk aversion

Figure 2: Impulse responses for labor effort in the model with habit formation
and capital adjustment costs. See section 5.1.4 for details on the calculations
involved.

Perhaps more striking, though, is the behavior of labor hours at impact:
hours actually rise in responses to the shock. Note that the impulse responses
plot, in effect, linearly de-trended data. While hours lack a time trend, given

20
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the high persistence of the shock process it is no doubt the case that HP-filtered
hours (the data underlying Table 6) behave somewhat differently, as of course
does HP-filtered output (which does have a trend). The countercyclical im-
pulse response of hours in Figure 2 is thus not necessarily inconsistent with
the weak positive correlation shown in the table.

As discussed above, the countercyclical response of hours here presumably
reflects the agent’s desire to maintain consumption above the habit level, in
spite of the poor production possibilities in the impact period. After impact,
hours fall to a level slightly below their long-run mean before quickly transi-
tioning back and, in fact overshooting very slightly.

With 100% depreciation assumed for the habit stock—and a habit-strength
parameter φ much less than one—the habit level can quickly adjust downward
in response to a persistent negative TFP shock. One has to assume that with
less than complete depreciation, the period of sharply increased hours, cur-
rently limited to the period of impact, would lengthen, though this is an exper-
iment which I still need to run.

The odd behavior of hours in the presence of habit formation has been
noted by Graham [15], though he does not obtain hours that are actually coun-
tercyclical. The intratemporal preferences Graham uses—like those used by
Smets and Wouters [32]—impose a form of separability between consumption
and hours worked that is inconsistent with balanced growth. The complemen-
tarity between consumption and leisure in the preferences I employ, necessary
for consistency with balanced growth, may thus contribute to the countercycli-
cality observed in Figure 2.

Finally, what of the welfare costs of volatility in the full model? Table 7
contains the results. Compared to the no-habit results, the costs of volatility in
the model with habit formation are slightly higher under EU (though still mi-
nuscule); lower by about 0.1% of consumption, in general, for the high CRRA
case; and essentially unchanged for the FORA specification. The λ2 values are
higher in that case, but this simply reflects the fact that there is much less pre-
cautionary accumulation of capital in the full model.11 The cost of volatility
is still on the order of $120 billion annually, if current US annual consumption
spending is our reference.

11Recall that both λ1 and λ2 envision a switch from a deterministic economy to the stochastic
economy. Lifetime utility in the stochastic economy is the same for both comparisons—it is cer-
tainty equivalent lifetime utility in the stochastic economy, holding the the stochastic economy’s
long-run average stocks. The two measures differ, though, in their deterministic benchmarks. For
λ1, the agent is holding the stochastic economy’s long-run stocks, while for λ2 the agent is holding
the deterministic economy’s long-run (steady state) stocks. The deterministic benchmark in λ1 is
more attractive than that in λ2 to the extent that the stochastic steady state stocks are higher—
hence the agent requires more compensation to switch out of λ1’s deterministic environment. That
effect is very pronounced in the stripped-down model, but is close to negligible in the model with
habits.
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ε = 0.50
λ1 λ2

EU, θ = 1/ε, γ = 1 0.04 0.06
High CRRA, θ = 100, γ = 1 0.28 0.27
FORA, θ = 1, γ = 0.9 1.31 1.33

ε = 15
λ1 λ2

EU, θ = 1/ε, γ = 1 0.03 0.05
High CRRA, θ = 100, γ = 1 0.28 0.29
FORA, θ = 1, γ = 0.9 1.31 1.33

Table 7: Welfare cost of fluctuations in the model with habit formation and
capital adjustment costs.

6 Conclusions and directions for future work

Risk preferences matter a great deal for the cost of aggregate volatility. In a
technology shock-driven business cycle model with production and elastic la-
bor effort, it’s doubtful that they matter for anything else, including the average
level of the risk-free rate.

Intertemporal substitution matters a great deal as does the presence of habit
formation. With elastic labor supply and intratemporal preferences constrained
to be consistent with balanced growth, values of the EIS greater than one can
lead, somewhat counterintuitively, to countercyclical behavior for consump-
tion, and habits, together with capital adjustment costs, can produce counter-
cyclical behavior for labor effort. Habit does not contribute noticeably to the
model’s average equity premium, in contrast to results from models with fixed
labor supply.

At various points in the paper, I noted the need for additional work—not
extensions of the current paper, but improvements of it. Those include: analyz-
ing the robustness of the solutions to the order of the approximating polynomi-
als; understanding exactly why the method fails to find solutions to the model
when habits are sufficiently strong; and considering different calibrations of
the habit and adjustment cost parameters, including less-than-complete depre-
ciation of the habit stock.

A Appendix: First-order risk aversion

A.1 Background

The FORA risk preferences I employ in this paper are similar to those used
by Epstein and Zin [12] in studying the equity premium puzzle. Epstein and
Zin’s specification, in turn, is based on the non-expected utility formulations
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of Yaari [40] and Quiggin [27]. Risk preferences of this sort are referred to in
the literature variously as “rank-dependent expected utility,” “expected utility
with rank-dependent probabilities,” or “anticipated utility” (the latter follow-
ing the language of Quiggin [27]). They can be derived under various sets of
axioms (see Wakker [37], and the references therein). A key feature of these
preferences—like many other alternatives to expected utility—is that they are
non-linear in probabilities. Among the aims of the authors who originally for-
mulated risk preferences of this form was to elaborate models of choice un-
der risk capable of rationalizing the apparent fact that individuals often make
choices that are inconsistent with the independence axiom of expected utility—
for example, the Allais paradox or the common ratio effect documented by
Kahneman and Tversky.12 The FORA risk preferences used in this paper, like
other alternatives to expected utility, can be parametrized to be consistent with
the choices generally made by individuals in the Allais paradox and are con-
sistent with the common ratio effect.

The fact that risk preferences of this form are non-linear in probabilities
gives them another attractive feature: the ability to at least partially divorce
agents’ attitudes towards risk from their attitudes towards wealth.13 Under
expected utility, aversion to risk is equivalent to diminishing marginal util-
ity of wealth, and the intimate connection between the two concepts has been
shown to be problematic for the EU model. For example, Chetty [6] has shown
that estimates of labor supply elasticity (and the degree of complementarity
between consumption and leisure) can put sharp bounds on admissible coeffi-
cients of relative risk aversion, since both values are linked to the curvature of
agents’ von Neumann-Morgenstern utilities over consumption. Chetty finds
that the mean coefficient of relative risk aversion implied by 33 studies of labor
supply elasticity is roughly unity, which would mean that the EU model is in-
capable of rationalizing both observed labor supply behavior and the degrees
of risk aversion observed in many risky choice settings, many of which imply
double-digit coefficients of relative risk aversion.

One of the most attractive features of these preferences, though, from the
standpoint of empirical plausibility, is the fact that they can be parametrized
to give a reasonable amount of risk aversion for both large and small gam-
bles. This is in contrast to the standard expected utility specification. In the
CRRA class, for example, if the coefficient of risk aversion is calibrated so that
an agent with those preferences gives plausible answers to questions about
large gambles, the agent will be roughly risk neutral for small gambles. If, on
the other hand, the coefficient of risk aversion is set sufficiently large that the
agent gives plausible answers to questions about small gambles, he will appear
extremely risk averse when confronted with large gambles.14 This is because

12Starmer [33] is an excellent recent survey of this literature.
13As Yaari [40] puts it: “At the level of fundamental principles, risk aversion and diminishing

marginal utility of wealth, which are synonymous under expected utility, are horses of different
colors.” In Yaari’s theory the divorce of the two concepts is complete.

14Note that my claim here is much more modest than that in Rabin [28]. Indeed, as Safra and
Segal show in a recent paper [31], almost all common alternatives to expected utility are susceptible
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the standard expected utility specification with constant relative risk aversion
is “smooth at certainty”—the agent’s indifference curves between consump-
tion in different states of nature are smooth and tangent (at the certainty point)
to the indifference curves of a risk neutral agent.

The risk preferences I use introduce a kink into agents’ indifference curves
at the certainty point; the kink is what allows for a plausible calibration of
risk aversion for small gambles.15 The parameter γ—which makes outcome
rankings matter—is the source of the kink. The parameter θ, analogous to the
risk aversion coefficient in CRRA preferences, governs curvature away from
the certainty point and allows for a plausible calibration of risk aversion for
large gambles.

A.2 Some calibration exercises

A few calculations can illustrate the sense in which the FORA risk preferences
just described can be parametrized to give an empirically plausible degree of
risk aversion over a broader range of gamble sizes than is possible with the EU
specification.

In each case, I evaluate binary lotteries of the form {w̃; p}, where wealth w̃
takes on the value wL with probability p or wH > wL with probability 1− p,
using

µ(w̃) = [pγw1−θ
L + (1− pγ)w1−θ

H ]1/(1−θ) (9)

and compare the certainty equivalents to the mean of wealth as a measure of
willingness to pay to avoid the gamble. I consider the FORA case of γ = 0.9
and θ = 1, and compare it to the EU/CRRA case that sets γ = 1 and arbitrary
θ ≥ 0.

Consider first a very small risk. Suppose an agent with initial wealth of
$30,000 faces a 0.00477 probability of losing $55. This is a small risk—the stan-
dard deviation of the lottery {w̃; p} = {(29945, 30000); (0.00477, 0.99523)} , as
a percent of mean wealth, is about 0.013%. If the agent has FORA preferences
with γ = .9 and θ = 1, he would be willing to pay just under 45 cents to in-
sure against this risk. Is that a lot? Apparently not: while the initial wealth
level of $30,000 is purely hypothetical, the 0.00477 probability and $55 loss are
averages from Cicchetti and Dubin’s [7] data on phone wire insurance: repair
charges averaged $55 per claim and the average probability of a claim was
0.00477 per month. The average price of phone wire insurance was 45 cents
per month (nearly two times the expected loss), and 57% of the customers in

to a Rabin-like critique. The one exception noted by Safra and Segal is Yaari’s dual theory of choice
under risk, which is a special case of the preferences I employ here (holding when θ = 0). The
calculations I make below follow (albeit to a somewhat different end) the spirit of Palacios-Huerta,
Serrano and Volij [26]—“[I]t is more useful not to argue whether expected utility is literally true
(we know that it is not, since many violations of its underpinning axioms have been exhibited).
Rather, one should insist on the identification of a useful range of empirical applications where
expected utility is a useful model to approximate, explain, and predict behavior.”

15See figure 1 in [12]. The “disappointment aversion” preferences used by Campanale et al. [5]
share this feature.
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their sample purchased phone wire insurance. Coaxing a willingness to pay
45¢for this insurance out of an EU/CRRA agent with the same initial wealth
would require a coefficient of relative risk aversion of 550.16

Now consider a more modest-sized risk. Suppose the agent with wealth
equal to $30,000 faces a 0.245 probability of losing $182. The standard devia-
tion of this gamble, as percent of mean wealth, is 0.26%. A FORA agent with
γ = .9 and θ = 1 (as in the last example), would be willing to pay about $51
to insure against this risk. The loss and loss probability again come from an
empirical study: Cohen and Einav’s [8] analysis of the choice of auto insur-
ance deductibles in a large sample of Israeli drivers. The $51 the FORA agent
would pay is in the right ballpark—in Cohen and Einav’s data, the average
deductible-premium menu offers savings on deductible of $182 (in the event
of claims, which have an average frequency of 0.245) at a price of $55. About
18% of the individuals in the sample chose higher premiums in exchange for
a lower deductible. Coaxing a willingness to pay $51 for this insurance out of
an EU/CRRA agent with the same initial wealth of $30,000 would require a
coefficient of relative risk aversion of about 50.17

Finally, consider a large risk. Suppose the agent, again with initial wealth
of $30,000, faces a 7% probability of suffering a $5,000 loss. This represents
a gamble with a standard deviation equal to 4.3% of mean wealth. A FORA
agent with γ = .9 and θ = 1 (as in the previous two examples) would be will-
ing to pay $495 to insure against this risk. The 7% probability and $5,000 loss
are roughly the US average homeowners’ multi-peril insurance claim rate and
claim intensity for the period 2000–2004, according to the Insurance Informa-
tion Institute.18 $495 is low compared to the US average premium, in 2004, of
over $600, but it’s in the general vicinity. Coaxing a willingness to pay $495
for insurance against this risk from an EU/CRRA agent with the same initial
wealth is easier here than in the smaller-risk examples—a coefficient of rela-
tive risk aversion of about 4 will work. Of course, the market for homeowners’
insurance is complex—the industry is regulated, homeowners with mortgages
have little choice as to whether to insure or not, and the average figures mask
considerable heterogeneity. The point of this example, though, together with
the two previous examples, is simply to show that a FORA agent with risk
preferences that depart modestly from EU/CRRA (which is γ = 1) will be in
the ballpark of empirical plausibility in all three cases. To achieve the same for
the EU/CRRA specification meant re-calibrating the coefficient of relative risk

16Note that my interpretation of Cicchetti and Dubin’s data differs from their own, as they con-
clude that the data are consistent with EU with only a modest coefficient of risk aversion. My
interpretation is more akin to that of Rabin and Thaler [29].

17Cohen and Einav estimate a structural model taking account of adverse selection and allow-
ing for heterogeneity in individual risk and risk aversion. Using average annual Israeli income as
a proxy for wealth, they obtain an average relative risk aversion coefficient of 81 in their bench-
mark specification. Sydnor [34] presents a similar example using data on deductible choices in the
market for homeowners insurance and finds implied relative risk aversion coefficients in the triple
digits.

18http://www.iii.org/media/facts/statsbyissue/homeowners/. [This link was active as of
5/11/2011. These numbers need to be brought up to date.]
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aversion from 550 for the very small risk, to 50 for the modest risk and finally
to 4 for the large risk. Choose only one of those numbers and apply it to all
three examples, and the EU/CRRA agent will be far out of the ballpark in two
out of three cases.

There is, of course, also a large literature in experimental economics that
seeks to adduce individuals’ attitudes towards risk, though I confess to find-
ing the results in that literature difficult to interpret, as it is generally assumed
that the consequences to the subjects of the choices they make are simply the
payoffs they receive in the experiment—initial wealth or income are “checked
at the door”, so to speak. The recent study by Holt and Laury [19] is a good
case in point, in particular because it seems so well-done. In Holt and Laury’s
experiments, subjects are given a choice between pairs of binary gambles, a
safer gamble (call it A) that pays $2.00 with probability p and $1.60 with prob-
ability 1− p and a riskier gamble (B) that pays $3.85 with probability p and
$0.10 with probability 1− p. When the probability of the higher outcomes, p,
is near zero, gamble A has a higher expected value than B; the opposite is true
when p is near one. They are interested in the effects that payoff size has on
their experimental results, so in addition to the gambles just described, Holt
and Laury also perform experiments where the payoffs are scaled up by a fac-
tors of 20, 50 and 90. They conduct experiments where the payoffs are real
(a subject can really go home with $346.50, say) and experiments where the
payoffs are hypothetical.

Holt and Laury’s experiments ask subject to choose between the A and B
gambles at different values of p, the probability of the higher outcomes; in par-
ticular, they record the point at which subjects switch from the safer A gamble
to the riskier B gamble as p is increased from 1/10 to 1 in increments of 1/10.
An expected income maximizer, for example, would choose A up to p = 4/10,
then switch to B. Among the results Holt and Laury report are the proportions
of subjects’ choices that are consistent with maximizing E(x1−θ)/(1 − θ) for
a CRRA coefficient θ in various ranges.19 While they find significantly more
risk aversion than had been found previously in the experimental literature—
especially when the payoffs are real and high—only a very small fraction of the
choices are consistent with maximizing E(x1−θ)/(1− θ) for θ as big as even
1.37. But this is under the assumption that the relevant x in the subjects’ minds
is simply the payoff from the experiment. If one allows that the consequences
are final wealth levels—w + x where w is a subject’s initial wealth and x is in-
come earned in the experiment—then even a modest value of w will blow up
the the implied most-common values of θ considerably.20 For example, in their
‘×20 real’ treatment—when payoffs are 20 times the values given in the pre-
vious paragraph, and are real rather than hypothetical—the most common be-
havior is sticking with A up to p = 6/10, then switching to B. If an individual

19This coefficient is r in Holt and Laury’s notation.
20And if one doesn’t factor in initial wealth, then the gambles they consider—in terms of their

standard deviation—are extremely large, with percent standard deviations ranging from about 6
to over 200 (excluding degenerate gambles). In that case it’s no surprise that the CRRA coefficients
that can be ascribed to most subjects must be quite small.
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is indifferent between A and B at p = 6/10, and is an EU/CRRA maximizer
who regards the consequences of the experiment as simply the payoffs from
the experiment, then he must have a value of θ ∼= 0.41. If the subject has even
$100 in initial wealth, though, and views the consequences as being values of
final wealth, he must have θ ∼= 2; if initial wealth is $1,000, this value becomes
θ ∼= 15.21
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