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The well-known habit model of Campbell and Cochrane (1999) specifies a process for the
‘surplus ratio’—the excess of consumption over habit, relative to consumption—rather than
an evolution for the habit stock. This paper shows that Campbell–Cochrane preferences can
be accommodated in a Markov chain framework à la Mehra and Prescott (1985) and
mapped into an equivalent state-dependent form of the sort studied by Melino and Yang
(2003). The equivalence sheds light on the workings of Campbell–Cochrane preferences
and the plausibility of upcounting in Melino and Yang’s framework. The result may also
have some pedagogical value.
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1. Introduction

In this note, I demonstrate one way of putting the habit preferences of Campbell and Cochrane (1999) into the two-state
Markov chain framework of Mehra and Prescott (1985). I expect a natural question in the minds of at least a few readers is,
‘‘Why?” The answer is that by situating Campbell–Cochrane preferences in a Mehra–Prescott economy we can perform
another sort of ‘reverse engineering’ exercise, complementary to that performed by Campbell and Cochrane themselves.
The reverse engineering draws on the work of Melino and Yang (2003), who showed us, in the context of a Mehra–Prescott
economy, exactly what the stochastic discount factor (SDF) must look like to match the first and second moments of asset
returns in Mehra and Prescott’s long sample of returns. We can calibrate our version of Campbell–Cochrane preferences to
match that SDF.

The exercise would be of only pedagogical interest unless it told us something interesting about one or both of the two
approaches to the equity premium puzzle that it combines. I think it does. While countercyclical risk aversion has been
rightly emphasized as a key mechanism in the Campbell–Cochrane model, mapping Campbell and Cochrane into a state-
dependent preference specification that matches the returns data shows that a countercyclical utility discount factor, often
l Reserve
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greater than one, is also important. And, while Melino and Yang dismiss state-dependent specifications that imply discount
factors greater than one, the model here shows there may be a plausible story that rationalizes such a specification.

That said, the exercise may have pedagogical value as well. Given the computational tractability of the Markov chain
framework, and the ubiquity of analogous structures in macroeconomics, the framework is a natural one in which to teach
asset-pricing within a graduate course in macroeconomics.1 Most of the major responses to the ‘equity premium puzzle’ fit
easily within the framework—except for Campbell and Cochrane.2 The exercise in this paper fills that gap.

It is useful to quickly review the features of the Campbell–Cochrane and Melino–Yang models separately before combin-
ing them. The next two sections do this.

1.1. Campbell and Cochrane

Campbell and Cochrane’s 1999 paper in the Journal of Political Economy employs habit formation to successfully resolve a
number of asset pricing puzzles, including Mehra and Prescott’s equity premium puzzle. Campbell and Cochrane achieve
these resolutions by a clever reverse engineering of their representative agent’s habit process.

Rather than specify a law of motion for the habit stock, Campbell and Cochrane specify a law of motion for what they call
the ‘surplus ratio’, St ¼ ðct � htÞ=ct , where ct is aggregate consumption (the habit is external) and ht is the habit stock. Their
stochastic discount factor, from t to t þ 1, is
1 For
econ.ne

2 Mo
can all
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Cochran
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mt;tþ1 ¼ bx�atþ1
Stþ1

St

� ��a
ð1Þ
where b is the utility discount factor, and the curvature parameter a, together with the surplus ratio, determines the agent’s
local degree of risk aversion.3 As Campbell and Cochrane note, countercyclical risk aversion is a key feature of their
specification.

Consumption growth xtþ1 is assumed to be i:i:d. lognormal, and the log surplus ratio is assumed to evolve according to
logðStþ1Þ ¼ ð1� /Þ�sþ / logðStÞ þ kðStÞ½logðxtþ1Þ � g� ð2Þ

where g is the mean of log consumption growth, / controls the persistence of the surplus ratio process, and the crucial func-
tion kðStÞ controls the sensitivity of changes in the surplus ratio to shocks to consumption growth.4

The key to their reverse-engineering is the form of kðStÞ,which is decreasing in St , hence countercyclical.

1.2. Melino and Yang

Melino and Yang, in their 2003 paper in the Review of Economic Dynamics, perform another type of reverse engineering
exercise. Using Mehra and Prescott’s two-state Markov chain for consumption growth, and assuming that consumption
growth is a sufficient statistic for the riskless rate and the price-dividend ratio of an aggregate consumption claim, they
derived the stochastic discount factor that, in combination with the Mehra–Prescott consumption process, yields equity
and riskless return processes that exactly match the means and standard deviations calculated by Mehra and Prescott from
their long sample of asset returns.

Recall that the Mehra–Prescott Markov chain has
xt 2 fxL; xHg ¼ f0:982;1:054g ð3Þ

and
P ¼ PLL PLH

PHL PHH

� �
¼ 0:43 0:57

0:57 0:43

� �
ð4Þ
where Pij ¼ Prfxtþ1 ¼ xj : xt ¼ xig. Here, L and H denote the low and high consumption growth states, respectively. Mehra and
Prescott’s long sample of data on returns has an average risk-free rate of 0.8% and an average equity return of 7%. The stan-
dard deviations of the risk-free rate and equity return are 5.6 percentage points and 16.5 percentage points, respectively.

The Melino-Yang SDF is
m̂ ¼ m̂LL m̂LH

m̂HL m̂HH

� �
¼ 1:86 0:24

1:13 0:95

� �
ð5Þ
an example, see the ‘Markov Asset Pricing’ section in John Stachurski and Thomas Sargent’s online lectures on quantitative economics: http://quant-
t/py/markov_asset.html.
dels with Epstein-Zin preferences, rare disasters, concerns for robustness, disappointment aversion, and (with some effort) long-run consumption risk
be treated computationally as simple extensions of the Mehra and Prescott’s framework.
pbell and Cochrane show that, locally, relative risk aversion is given by u00 ðct�ht Þct

u0 ðct�ht Þ
��� ��� ¼ a

St
. Here and below, our notation differs slightly from Campbell and

e’s.
pbell and Cochrane write k as a function of logðStÞ, but that difference is immaterial here.
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Any model that reproduces the SDF m̂ within Mehra and Prescott’s Markov chain framework will exactly match the first
and second moments of Mehra and Prescott’s asset returns data.

More suggestively, one can use m̂ and the Mehra–Prescott Markov transition matrix (4) to derive risk-neutral probabil-
ities, an insight of Routledge and Zin (2010). These are given by
ŵ ¼ ŵLL ŵLH

ŵHL ŵHH

" #
¼ 0:85 0:15

0:61 0:39

� �
ð6Þ
The Melino–Yang risk neutral probabilities suggest that countercyclical risk aversion is an important element of any res-
olution of Mehra and Prescott’s puzzle. Conditional on being in the low-growth state, for example, the objective probability
of remaining in the low-growth state is just 0.43, versus ŵLL ¼ 0:85. Conditional on being in the high-growth state, the risk
neutral probabilities are quite close to the objective probabilities—ŵH;j ¼ f0:61;0:39g versus PH;j ¼ f0:57;0:43g.

However, as Melino and Yang demonstrate—by trying to calibrate various standard and state-dependent preference spec-
ifications so as to produce SDFs that match m̂—countercyclical risk aversion, while important, is alone not sufficient to
resolve the puzzle.

One preference specification that Melino and Yang examine only cursorily is that of Campbell and Cochrane, as it appears
to require expanding the model’s state space. Melino and Yang’s calculations show that the asset return data can be rational-
ized (using state-dependent preferences) without adding extra states.

2. A Markov-chain version of Campbell and Cochrane

Consider the log growth rate of the surplus ratio from (2),
logðStþ1=StÞ ¼ ð/� 1Þ½logðStÞ � �s� þ kðStÞ½logðxtþ1Þ � g�: ð7Þ

A key feature of Campbell and Cochrane’s model is the non-constant response of growth in the surplus ratio to innova-

tions to consumption growth, captured in the function kðStÞ. While Campbell and Cochrane assume / is close to unity, the
conditional mean of logðStþ1=StÞ is nevertheless non-constant as well.

Could we put Campbell and Cochrane in the Mehra–Prescott framework simply by writing the surplus ratio St as a
function of the current Markov state? As Melino and Yang point out, that approach would not allow us to match the
returns data: we’d be effectively adding only one parameter to the SDF, in addition to a and b, and our SDF would lack
the flexibility necessary to match m̂. To see this, note that across the HH or LL transitions, we would have Stþ1=St ¼ 1,
while the growth rates across the LH and HL transitions would be inversely related. The SDF that results would have the
form
m ¼ mLL mLH

mHL mHH

� �
¼ bx�aL hbx�aH

h�1bx�aL bx�aH

" #
where h ¼ SH=SL.
Melino and Yang suggest introducing St as an independent state, but view this as inferior to their own state-dependent-

preferences approach, which resolves the equity premium puzzle without expanding the set of Markov states.
Distinct from either of those approaches—writing St as a function of xt or making St an additional state variable—we

may note that the level of the surplus ratio doesn’t matter for asset pricing, since the SDF depends only on the growth
rate.

With that in mind, we can capture the spirit of Campbell and Cochrane’s dynamics—as given in (7)—by writing the log
growth rate of the surplus ratio from t to t þ 1 as a function of realized growth ðxtþ1Þ, with parameters that depend on
the current Markov state ðxtÞ:
logðStþ1=StÞ ¼ mðxtÞ þ kðxtÞ logðxtþ1Þ: ð8Þ

As long as kðxÞ is non-constant, (8), like Campbell and Cochrane’s (7), features time-varying conditional volatility. In

Campbell and Cochrane, St is positively related to xt , so we would expect kðxtÞ to be decreasing in xt , just as Campbell
and Cochrane’s reverse engineering leads them to require that their kðStÞ to be decreasing in St . This is in fact what we derive
below.

Using (8), we can write the SDF (1) as
mtþ1 ¼ bx�atþ1 emðxtÞxkðxtÞtþ1

� ��a

¼ be�amðxt Þx�að1þkðxtÞÞ
tþ1
Since xt follows a Markov chain, we can write mi for mðxiÞ and ki for kðxiÞ, for i ¼ L;H. Then, the SDF becomes
m ¼ mi;j
	 
 ¼ be�ami x�að1þkiÞ

j

h i
: ð9Þ
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One drawback of this formulation—though not from the limited perspective of asset pricing—is that it renders the surplus
ratio itself nonstationary. In Campbell and Cochrane’s model, the surplus ratio is a stationary, though highly persistent,
stochastic process. As we’ll see below, though, the surplus ratio process described by (8) can be calibrated to be driftless,
without affecting its ability to match the asset returns data.5

3. Meeting Melino and Yang

To reverse engineer the surplus ratio in the Mehra–Prescott framework, we attempt to match the SDF (9) to the Melino–
Yang SDF m̂ for a suitable choice of parameters. In other words, the problem is to find a; b; mL; mHf g; kL; kHf g such that
5 In p
would r
our for
process

6 In t
be�ami x�að1þkiÞ
j ¼ m̂i;j; ð10Þ
where m̂ is given by (5). As it turns out, there are enough parameters to accomplish this matching—for any a and b, we can
find mL; mHf g; kL; kHf g such that (10) holds.

To see this, take logs and rearrange to get
mi þ logðxjÞki ¼ 1
a

logðbÞ � a logðxjÞ � logðm̂i;jÞ
	 
 ð11Þ
There are thus two equations to solve for ðmL; kLÞ and two equations to solve for ðmH; kHÞ. For ðmL; kLÞ, we have
1 logðxLÞ
1 logðxHÞ

� � mL
kL

� �
¼ 1
a

logðbÞ � a logðxLÞ � logðm̂L;LÞ
logðbÞ � a logðxHÞ � logðm̂L;HÞ

� �
ð12Þ
An analogous expression obtains for ðmH; kHÞ. The values are determined uniquely since
1 logðxLÞ
1 logðxHÞ

� �
is invertible for xL and xH as given in the Mehra–Prescott process.
Solving (12) for ki; i ¼ L;H, gives
ki ¼ �1þ log m̂i;L=m̂i;H
� �

a logðxH=xLÞ ð13Þ
With the Mehra–Prescott process, logðxH=xLÞ ¼ 0:0708, approximately 2 times the standard deviation of x. For the Melino–
Yang SDF, given in (5),
logðm̂L;L=m̂L;HÞ ¼ 2:03
logðm̂H;L=m̂H;HÞ ¼ 0:17
Substituting these numbers into (13) gives
kL ¼ �1þ 1
a
28:73

kH ¼ �1þ 1
a
2:42 ð14Þ
Thus, k is strongly decreasing from the low- to high-growth state, just as Campbell–Cochrane’s k is strongly decreasing in the
current surplus ratio.

For a ¼ 1, say, the range of our k is in fact close to the typical range of Campbell–Cochrane’s k, if we take as typical the
image under their kðSÞ of a (conditional) two standard deviation interval around their �s, using the law of motion (7) and their
parameter values.6 Using their parameters—from their Table 1—at an annual frequency, I calculate this range to be ½2:41;22:80�.

The solution for mi; i ¼ L;H, is
mi ¼ logðbÞ
a

� 1
a
logðxHÞ logðm̂i;LÞ � logðxLÞ logðm̂i;HÞ

logðxH=xLÞ ð15Þ
Using the values for logðxÞ, from (3), and for logðm̂Þ, from (5), gives
articular, the process can be calibrated so that E½logðStþ1=StÞ� ¼ 0. Absent consumption growth fluctuations from any date ton, our log surplus ratio
emain constant; in Campbell and Cochrane’s model, it would eventually converge to its steady state level. The implicit evolution of the habit stock in
mulation is no doubt more complicated than that implicit in Campbell and Cochrane’s model, though neither is readily describable by the linear
es common to other habit models.
heir notation, this image is kð�s� 2kð�sÞrÞ.



Table 1
Effect of varying consumption autocorrelation. Pii and Pij are the diagonal and off-
diagonal elements of the Markov matrix for consumption growth; ŵ is the set of
risk-neutral probabilities; the ai are the state-dependent curvature parameters;
the bi are the state-dependent discount factors; EðbÞ is the unconditional mean of
the bi .

q ¼ �0:14 0:0 0:30 0:42

Pii 0:43 0:5 0:65 0:71
Pij 0:57 0:5 0:35 0:29

ŵLL 0:852 0:862 0:886 0:897

ŵLH 0:148 0:138 0:114 0:103

ŵHL 0:611 0:582 0:510 0:475

ŵHH 0:389 0:418 0:490 0:525

aL 28:727 25:857 20:206 17:978
aH 2:416 4:698 9:306 11:257
bL 1:105 1:013 0:887 0:857
bH 1:078 1:123 1:292 1:403
EðbÞ 1:092 1:068 1:090 1:130
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mL ¼ 1
a

logðbÞ � 0:100ð Þ

mH ¼ 1
a

logðbÞ � 0:075ð Þ ð16Þ
As one might expect, based on Campbell and Cochrane’s calibration of their surplus process, the cyclical variation in m is
much smaller than the variation in k.

For given a and b, and using Mehra and Prescott’s Markov transition matrix, (14) and (16) imply that the conditional
mean of the log growth rate of the surplus ratio is
EL logðStþ1=StÞ½ � ¼ logðbÞ þ 0:537
a

� 0:022

EH logðStþ1=StÞ½ � ¼ logðbÞ � 0:046
a

� 0:012 ð17Þ
For example, for a ¼ 1,
EL logðStþ1=StÞ½ � ¼ logðbÞ þ 0:515
EH logðStþ1=StÞ½ � ¼ logðbÞ � 0:058
As long as b is not too small, in the low-growth state the surplus ratio is expected to increase, while in the high-growth
state, it is expected to decline. And, if logðbÞ ¼ �ð1=2Þð0:515� 0:058Þ, a value of b just under 0.8, the unconditional expec-
tation of logðStþ1=StÞ will be zero. In log terms, the surplus ratio will be non-stationary, but have zero drift.

In the next section, I go one step further and map the SDF (9) into an SDF of the standard time-additive, CRRA form, but
with state-dependent preference parameters (relative risk aversion and discounting). This is more squarely within Melino
and Yang’s framework. As in their model, the preference parameters are functions only of the current Markov state, though
it is worth emphasizing that the starting point was a model with a more complex dependence of the agent’s preferences on
the set of Markov states. The growth rate of our surplus ratio from tto t þ 1 depends on both xtand xtþ1, but the effects of the
current and next-period states, conveniently, can be separated in such a way that the parameters of the state-dependent
equivalent representation depend only on xt .

4. State-dependent preferences

As claimed above, one can re-interpret the preferences we’ve specified here as a state-dependent version of the standard
time-additively-separable, constant relative risk aversion form, with variation in both the coefficient of relative risk aversion
and the utility discount factor. That is, we may re-write the SDF (9) in the form
mi;j ¼ bix
�ai
j ð18Þ
The mapping is easily derived from (9), defining bi and ai by setting
bix
�ai
j ¼ be�ami x�að1þkiÞ

j ð19Þ

for i; j ¼ L;H. That is,



7 The
similar

8 All
9 And

60 J. Dolmas /North American Journal of Economics and Finance 40 (2017) 55–62
ai ¼ að1þ kiÞ
bi ¼ be�ami : ð20Þ
Combining (20) with (14) and (16)—or directly equating the SDF in (18) with the Melino–Yang SDF m̂—gives the values of
bi and ai consistent with first and second moments of the asset return data:

As expected, the state-dependent representation features a strongly countercyclical risk aversion coefficient, varying from
roughly 2.4 in the high-growth state to nearly 30 in the low-growth state. That the representation features state-dependent
risk aversion is not surprising, given Campbell and Cochrane’s interpretation of their habit specification (or the Melino–Yang
risk-neutral probabilities).

More surprising is the state-dependence of the utility discount factor; in this representation, the discount factor is uni-
formly greater than one and countercyclical (so the rate of time preference is negative and procyclical). An agent with these
preferences ‘upcounts’ future utility in either state, the more so (more patiently) in the low-growth state. The variation is
sizable: the agent’s rate of time preference differs by about 0.025, or 2.5 percentage points, across states.

Upcounting on average, of course, helps match the low average risk-free rate, a fact pointed out early on by Benninga and
Protopapadakis (1990). The countercyclicality of the utility discount factor, though, is at first glance puzzling. The parame-
ters have been reverse-engineered to match Melino and Yang’s SDF, and that SDF corresponds to a countercylical risk-free
rate. One might have expected a lower discount factor (and higher rate of time preference) in the low-growth state.

It turns out that, without the offsetting countercyclicality of the utility discount factor, the implied risk-free rate (as well
as the implied equity return) would be too countercyclical. Precisely, suppose that we replace b ¼ fbL; bHg with the average
of bL and bH (keeping the behavior of ai the same). The resulting SDF would (roughly) match the mean risk-free rate (0.8%),
but with too high a standard deviation. The model would fail on other dimensions as well.7

Does Campbell and Cochrane’s own model—rather than just our version of it—have a state-dependent representation
with a utility discount factor that’s countercyclical and greater than one? Fig. 1 shows the result of simulating Campbell
and Cochrane’s model, at an annual frequency, using the parameters given in their Table 1. In constructing the figure, I sim-
ulated the behavior of their stochastic discount factor (for a given path of consumption growth innovations) and defined bt

by
btx
�at
tþ1 ¼ mt;tþ1 ð21Þ
where mt;tþ1 is the realization of the SDF from period t to t þ 1; xtþ1 is (gross) consumption growth from t to t þ 1, and
at ¼ að1þ kðStÞÞ.

The resulting bt—simulated for 100 periods—is almost always greater than one. The lower panel of the figure plots the
dependence of bt on the log surplus ratio, verifying the countercyclicality of the utility discount factor.8

Melino and Yang do not consider exactly the case of an SDF given by (18); their framework features Epstein-Zin prefer-
ences, with potential variation in one or more of that family’s three parameters (risk aversion, intertemporal substitution,
and discounting). They do, however, look at the case of cyclical risk aversion and discounting, holding fixed the elasticity
of intertemporal substitution. While that case can be calibrated to match the SDF m̂, they rule it out, for a variety of technical
reasons, on the grounds that the discount factor turns out to exceed one in one or both of the Markov states.9

5. A robustness check

It is natural to ask whether our result on the behavior of the utility discount factor hinges on the negative autocorrelation
in consumption growth that characterizes the Mehra–Prescott Markov chain. After all, the autocorrelation properties of con-
sumption growth can differ depending on the sample period and also with corrections or adjustments to data collected prior
to the creation of systematic national accounts. Azeredo (2014), for example, estimates an autocorrelation in annual con-
sumption growth of 0.42 for the period 1899–2012, using corrected pre-1929 data. Samples starting after 1930 also feature
mild positive autocorrelation, on the order of 0.3.

Campbell and Cochrane, moreover, assume that consumption growth is i.i.d, making the zero autocorrelation case of
interest as well.
standard deviation of the implied risk-free rate in this case is 1.2 percentage points too high. The volatility of the implied equity return is too high by a
magnitude, and the implied equity premium is too high by two percentage points.
the MATLAB code for this paper can be found at http://www.jimdolmas.net/economics/current-work.
the cyclicality they find is in fact the opposite of what we obtain here.



Fig. 1. State-dependent utility discount factor in the Campbell–Cochrane model. The upper panel shows bt over time; the lower panel plots bt against st , the
log surplus ratio. Data are simulated using the annual versions of parameters given in Campbell and Cochrane’s Table 1. The simulation starts from s0 ¼ �s,
and the first 100 periods have been discarded. Consumption growth innovations were generated using MATLAB’s randn function.
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Changes to the assumed autocorrelation of consumption growth impact the calculations presented above by changing the
‘reverse-engineered’ stochastic discount factor m̂ from that given in (5). Our derivations of the ki and mi parameters of the
surplus ratio, or the state-dependent ai and bi, depend on the autocorrelation in the consumption process only through m̂.10

Let q denote the autocorrelation in consumption. To evaluate the impact of alternative choices of q we follow the
methodology of Melino and Yang to derive alternative stochastic discount factors m̂ that are consistent with the first and
second moments of asset returns. This involves solving for the price-dividend ratios for the two consumption growth states
(call them wL and wH) that—together with the Markov process for consumption growth—produce a matrix of equity returns
across state transitions that match the unconditional mean (7%) and standard deviation (16.5 percentage points) in the data.
Given the matrix of returns across state transitions and the values of the risk-free rate in the Land Hstates, it is straightfor-
ward to back out a matrix of risk-neutral probabilities, and from that a stochastic discount factor.11

The results of this exercise, for values of q equal to �0.14 (our benchmark case), 0.0(Campbell and Cochrane’s assump-
tion), 0.3 and 0.42 are shown in Table 1. For each value of q, the table records the diagonal and off-diagonal elements of the
symmetric state-transition probability matrix ðPÞ that obtains, the elements of the matrix of risk-neutral probabilities ðŵÞ
derived in the manner of Melino and Yang, and the state-dependent preference parameters that obtain by equating
½bix

�ai
j �

i;j¼L;H
to the stochastic discount factor m̂ associated with ŵ, as described in Section 4. The form of the surplus ratio

parameters ki and mi can be backed out using the equivalence described in Section 4.
Some interesting features emerge as the autocorrelation in consumption growth is assumed to be increasingly positive.

For one, the extent of countercyclicality in risk aversion needed to rationalize the returns data falls as q increases. This is
evident first in the diminishing difference between the ‘‘objective” probabilities Pii and Pij and their risk-neutral counter-
parts, conditional on being in the Lstate, and the increasing difference conditional on being in the Hstate. The difference
between aL and aH decreases, with the former falling by about 11and the latter increasing by about 9.

The cyclicality in bi changes, with bi becoming procyclical, and—for q ¼ 0:3 or 0.42—we have upcounting of future utility
only in the Hstate.12 The upcounting in the Hstate is more extreme at higher values of q, and, notably, the average value of bi

remains greater than one.
10 There is a direct dependence on the consumption growth rates in the Land Hstates, but these are unaffected by the choice of auotcorrelation.
11 As in Melino and Yang, the moment conditions we are trying to match result in a quadratic equation in the price-dividend ratios wi . There are two sets of
roots, but one set is easily ruled out as violating absence of arbitrage.
12 The unconditional volatility of bi also increases substantially; the unconditional standard deviation (not shown) rises from about 1% of EðbÞ to about 24%.
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6. Implications for additional moments

While Melino and Yang focus on exactly matching the first and second moments of equity returns and the risk-free rate
calculated by Mehra and Prescott (and assuming Mehra and Prescott’s Markov chain for consumption growth), Campbell and
Cochrane compare their model’s results to additional features of asset market data, including the volatility of the price/div-
idend ratio and the forecastability of returns.

In our framework, any additional properties of prices and returns are encoded in the stochastic discount factor m̂, which is
in turn pinned down by the first two moments of returns and the process for consumption growth.13 Our exercise is con-
cerned with preference specifications that rationalize m̂. The state-dependent preferences derived above, their Campbell–
Cochrane-like equivalent, and in fact any specification that, together with the process for consumption growth, matches m̂ will
have the same asset-pricing implications. The ability or failure to match additional asset-pricing moments are features of m̂ and
the Markov chain for consumption growth, regardless of the preferences that rationalize m̂.

That said, it is worth pointing out some additional implications of m̂ and the assumed process for consumption growth.
First, since we are in a Markov chain environment, the autocorrelation of any object that depends only on the current state
will be dictated by the autocorrelation inherent in the transition matrix P–i.e., the assumed autocorrelation of consumption
growth. Likewise, any object that depends only on the current state will have a contemporaneous correlation of one with
consumption growth. This is the case for price-dividend ratios and the risk-free rate.

Realized equity returns–as well as excess returns–depend on both the current and next-period state and so in principle
may co-move less closely with consumption growth and display autocorrelations that deviate from those inherent in the
transition matrix P. In practice, the model’s realized returns are essentially i.i.d. for the values of q in Table 1. The contem-
poraneous correlation between excess returns and consumption growth is less than one, but still high, ranging from 0.83 at
q ¼ �0:14 to 0.67 at q ¼ 0:42.

Volatility of the price-dividend ratio is too low at all values of q, but m̂ can deliver a realistic coefficient in a predictability
regression of one-period-ahead excess returns on the log dividend-price ratio.14 For values of q between 0.3 and 0.4, the
model-implied regression coefficients are 0.16 and 0.06, which are in the range of values found, for example in Campbell
and Yogo (2006). For q or less, excess returns are actually too sensitive to the log dividend-price ratio—we obtain too much
in the way of predictability.

7. Conclusion

This paper has laid out a Markov-chain-friendly version of Campbell–Cochrane preferences and from that derived a state-
dependent preference equivalent. In addition to providing some pedagogical value, the exercise hopefully sheds some light
on that workhorse habit model and expands the set of plausible state-dependent preference specifications. In particular, it is
hard to reject out of hand state-dependent specifications with upcounting of future utility if one also accepts the plausibility
of Campbell–Cochrane preferences.

Our two-state version of Campbell–Cochrane preferences maps neatly into a state-dependent preference specification
where both the coefficient of relative risk aversion and the utility discount factor vary with the state. Choosing the param-
eters of either to exactly match first and second moments of asset returns data reveals an important role for variation in dis-
counting, in addition to the expected countercyclicality of risk aversion. Notably, the state-dependent utility discount factor
displays substantial upcounting of future utility and substantial variation across the two states.
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