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Abstract 

Koopmans’s ‘recursive utility’ has proven useful in a number of dynamic modelling 
contexts. Nonetheless, recursive utility has not made significant inroads into what one 
would expect to be a natural haven - models of balanced growth, whether ‘exogenous’ 
or ‘endogenous’. Mainly, this is due to the dearth of interesting recursive utilities which 
are consistent with balanced growth. In this paper I provide conditions on the aggregator 
which guarantee the existence of a recursive utility function which is consistent with 
balanced growth. The result in turn shows how a family of such utility functions may be 
constructed. I also provide a generalization of Jones and Manuelli’s theorem on the 
existence of optimal endogenous growth. 
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1. Introduction 

Koopmans’s (1960) generalization of time-additively separable utility to ‘re- 
cursive utility’ held out a great deal of promise for a more economically 
reasonable treatment of preferences in dynamic models. Recursive utility 
preserves the most attractive features of additive utility - time consistency and 
amenability to dynamic programming - while dispensing with the artifice of 
a fixed rate of impatience. 

This DaDer is taken from ChaDter 3 of mv Ph.D. thesis at the Universitv of Rochester. I thank both 
John Boyd and Dave Zervos for stimulating my interest in this problem. I thank John Boyd, Greg 

Huffman, participants in the Theory Workshop at the University of Rochester, and several 

anonymous referees for numerous helpful comments. Any errors are of course my own. 

0165-1889/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved 

SSDI 016518899500869 W 



658 J. Dolmas /Journal of Economic Dynamics and Control 20 (1996) 657-680 

A notable problem with recursive utility, however, has been the difficulty in 
finding interesting recursive utility functions which are consistent with balanced 
growth - ‘consistent’ in the sense of having constant marginal rates of substitu- 
tion along consumption streams with constant growth rates. Thus, while recur- 
sive utility has proven its usefulness in a number of contexts,’ it has to date made 
no significant inroads into the ‘new growth theory’ - where balanced growth is 
generally taken to be an equilibrium or optimal outcome.2 While growth theory 
has come a long way from the basic neoclassical model with exogenous technical 
change, the progress within the field has been limited to the technology side of 
the problem - the preference side has remained very much the same. 

The purpose of this paper is to show that this need not be the case - there are 
nonadditive recursive utility functions which are consistent with balanced 
growth. What’s more, such functions are fairly simple to specify. The logic of the 
argument is quite simple: If a utility function is homogeneous of some degree 
y and recursive, then it is consistent with balanced growth. The problem then 
becomes one of finding such utility functions - which on its surface is not an easy 
task. However, I show that the ‘aggregator approach’ to recursive utility, first 
developed in Lucas and Stokey (1984), and later refined by Boyd (1990), can be 
employed to make this task manageable.3 The end result is a large ‘parametric’ 
family of balanced-growth-consistent recursive utility functions. An attractive 
feature of the family is that a number of existence results from the additive case 
_ in particular, existence of optimal paths in a Ramsey model and existence of 
endogenously growing optimal paths -carry through with only minor modifica- 
tion. Hypotheses cast in terms of a fixed discount factor need only be recast in 
terms of upper and lower bounds on the discounting inherent in the recursive 
utility specification. To demonstrate this point, I provide generalizations of the 
Brock-Gale condition for existence of optimal paths (Brock and Gale, 1969) 
and Jones and Manuelli’s theorem on the existence of optimal endogenous 
growth (Jones and Manuelli, 1990). 

The next section of the paper develops the theory of balanced-growth-consis- 
tent recursive utility, while Section 3 examines the existence and growth of 
optimal paths in a Ramsey model with balanced-growth-consistent recursive 
utility. Some proofs, as well more formal aspects of some sections, have been 

‘For example, in the study of optimal growth with heterogenous agents (Lucas and Stokey, 1984; 
Benhabib et al., 1987), in generating complex dynamics (Benhabib et al., 1990), in analyzing basic 
questions in international trade (Obstfeld, 1982), in analyzing the effects of capital income taxation 
(Charnley, 1986), and in resolving empirical puzzles in finance (Epstein and Zin, 1989). 

2Barro and Sala-i-Martin (1992) contains a nice survey of a number of the ‘new growth’ models, 
illuminating some fundamental similarities between the seemingly disparate models they consider. 

3The ‘aggregator’, defined formally in the next section, is Koopmans’s name for the function which 
combines current consumption and future utility to yield present utility. 
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relegated to the Appendix, the specific contents of which are indicated at various 
points in the text. I offer some concluding comments in Section 4. 

2. Balanced-growth-consistent recursive utility 

2.1. Preliminaries 

Suppose the utility associated with a consumption stream C = (cl,cz, . ..) is 
given by U(C). Let U,(C) denote the marginal unity of consumption at date t, so 
that the marginal rate of substitution between consumption in periods t and 
t + 1 is 

MRSt,t+,(C) = ~t(wJ~+l(c). 

If we think about situating these preferences in a model of capital accumula- 
tion - and if we wish to have balanced growth as a possible outcome of either 
equilibrium or optimal choices - then MRS,,,. , (C) must be independent of 
t whenever consumption grows at a constant rate.4 The notation here - 

MRS,,,+ 1 (C) - is meant to emphasize that in the most general case the marginal 
rate of substitution at any date will depend on the entire path of consumption, 
making constancy along balanced paths of consumption something quite 
special. 

In the additively separable case, with momentary utility u and discount factor 
6, the marginal rate of substitution between periods t and t + 1 depends only on 
consumption at dates t and t + 1. That is, 

MRS,, t + I (0 = u’(c,)l~u’(c,+ 11, 

Constancy along balanced paths is had by requiring further that this marginal 
rate of substitution depend only on the ratio of c, to c,+i. This is done by 
assuming that u is either homogeneous of some degree y or logarithmically 
homogeneous. 

What about the general recursive case? Let us first be more precise about the 
meaning of recursivity. A utility function U is recursive if there exists a function 
W defined on the space of one-period consumptions and the range of U such that 

U((.l,CZ . ..) = W(Cl,U(C~,Cj . ..)) 

4The intertemporal marginal rate of substitution will either be equated to a marginal product of 

capital - the case of optimal growth - or an interest rate - the case of equilibrium growth. Either 

quantity, the marginal product or the relative price, must be constant along a balanced path. 
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for every path of consumption (cr, c2 . . . ). In other words, with recursive utility, 
the utility at t = 1 of a consumption stream C is a function of current consump- 
tion, cl, and utility at date t = 2. Utility at date t = 2 is in turn a function - in 
particular, the same function - of consumption at t = 2 and utility at t = 3, and 
so on ad injinitum. The function W which combines current consumption and 
future utility is known as the aggregator, an appellation due to Koopmans. In 
the language used in the study of separable utility functions over finitely many 
commodities, W would be the macrofunction. In terms of functional structure, 
a recursive utility function displays strict separability between current consump- 
tion and future consumption. More than that, a recursive utility function is 
stationary. Stationarity means that if a path C starting today is at least as good 
as another path C’, then the path which gives some c today and C from 
tomorrow on is at least as good as the path with c today and C’ from tomorrow 
on, for any c - and vice uersa. Stationarity is only possible with an infinite 
number of commodities.’ 

Obviously, any time-additive utility function with a fixed discount factor is 
recursive, for consider: 

U(Cl, CP . ..) = t~l~t-lu(ct) = u(c1) + t~2bt-‘u(ct) = U(Q) + GU(c2,c3 ..*). 

Here, the aggregator is given by W(x, y) = u(x) + 6y. 
When utility is recursive, but nonadditive, the marginal rate of substitution 

between consumption in periods t and t + 1 will in general depend on more than 
just consumption at those two dates, but this dependence will be limited to 
consumption on or after those dates. The marginal rate of substitution between 
periods t and t + 1 will be independent of consumption of dates t - 1 or earlier. 
To see this, note that with recursive utility, the marginal utility of consumption 
at date t - found by repeated application of the chain rule to V(C) = 
W(cl, W(c2, W( ... ) ... ) - is given by 

Wl,C2 . ..I = W,h,U(C2,C3,~~.))X Wz(c2, U(c,,c,,...))x ... 

x W2(+1, ~(C,?C,.l,...))X Wlkk ~(Ct+1,Ct+2,...)), 

so that taking the ratio V,(C)/V,+ i(C) yields 

MRS,, t + I (C) = 
Wl(C,, U(c,+,,...)) 

W2h ~(C,.l,...NW,(C,.l, U(ct+2,...))’ 

‘The standard reference for the finite-dimensional theory is Blackorby, Primont, and Russell (1978). 
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Despite its independence from past consumption, this MRS can clearly 
become quite complicated when utility is nonadditive. Nevertheless, a similar 
principle applies as in the additive case: homogeneity of some degree y is 
sufficient to yield constancy of the MRS along balanced paths of consumption. 
This is the substance OE 

Proposition 1. If utility is homogeneous of some degree y and recursive with 
a once-diflerentiable aggregator W, then the marginal rate of substitution between 
consumption in adjacent periods will be constant whenever consumption grows at 
a constant rate. 

Proof: See Appendix. The basic idea of the proof is that if U is recursive and 
degree-y homogeneous, then U’s aggregator W satisfies homogeneity of the 
form W (Ax, IzYy) = Iy W(x, y). This has implications for the homogeneity prop- 
erties of WI and Wz, which together with that of U, guarantee constancy of 

MRS,, t + I along balanced paths. n 

This result - which tells us that certain sorts of recursive utility functions are 
consistent with balanced growth - is not, unfortunately, particularly useful by 
itself. Specifying a recursive utility function - i.e., writing down a U - is in 
general not an easy task, and the homogeneity constraint makes it even less so. 

Our problem, really, is how to generate nontrivial homogeneous recursive 
utility functions in as simple a way as possible. The next section shows how the 
‘aggregator approach’ to recursive utility - specifying a W rather than a U - can 
be adapted to this purpose. 

2.2. The aggregator approach 

Historically, Koopmans’s pioneering work on recursive utility took the utility 
function U - or a preference order representable by a U - as primitive and 
studied the question of the existence of the aggregator W. In other words, 
Koopmans asked: What properties of preferences guarantee recursivity? In the 
practice of dynamic modelling, however, it’s typically easier to work directly 
with the aggregator, taking it, rather than the utility function, as primitive. One 
might, for example, think more readily about meaningful restrictions on the 
trade-off between current consumption and future utility, and about impa- 
tience - restrictions which can be embodied in the functional specification of an 
aggregator - rather than restrictions on U.6 

“See, for example, Lucas and Stokey, op. cit., or Benhabib et al., op. cit., for applications which 
impose conditions directly on W. As Becker and Boyd (1993) note in their survey of recursive utility 

theory, this approach actually has antecedents in Fisher’s Theory of Interest and Hayek’s Pure 

Theory of Capital. 
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One potential problem with taking the aggregator as primitive, however, is 
verifying the existence of an underlying utility function. For an arbitrary W, 
there typically will be no function U which satisfies the recursion 
U(c,, c2, . ..) = W(Ci, U(Q, I.. )). This problem was first dealt with by Lucas and 
Stokey (1984), for the case of bounded aggregators. Boyd (1990) then introduced 
techniques which accommodated unbounded aggregators as well. Both meth- 
odologies rely on finding U as the fixed point of a functional mapping under 
certain restrictions on W. 

The Lucas-Stokey-Boyd results render operational the ‘aggregator as primi- 
tive’ approach. One begins with an aggregator that has properties desirable in 
one’s particular modelling context. If that aggregator then meets the conditions 
of the existence results in either Lucas and Stokey or Boyd, one is guaranteed of 
the existence of the recursive utility function, even if one cannot obtain an 
analytical expression for it.7 Becker and Boyd (1993) present an exhaustive 
survey of these and other results, many of them being the product of the two 
authors’ own considerable work in this area. 

For our purposes, if we can show that there are restrictions on the aggregator 
which guarantee homogeneity of the recursive utility function - and if those 
restrictions are not inconsistent with existence of the recursive utility function 
_ our problem will be solved. The result in the next section shows that this is in 
fact possible. 

2.3. Theorem 

To set the stage for the main result, we need to understand a bit more of the 
Lucas-Stokey-Boyd methodology. Taking the aggregator W as primitive, 
a recursive utility function - if one exists - will be the fixed point of a mapping 
Tw on an appropriate space of functions defined over streams of consumption. 
For 5 in this space, T,t is defined by 

(Tdh,ca,...) = Wh,4(cz,c~,...N. 

Clearly, if U satisfies T&J = U, we have a recursive utility function. 
Both Lucas and Stokey and Boyd give conditions - both on W and on the 

domain of TV - under which Tw is a strict contraction, hence has a fixed point. 
When this is true, the recursive utility function U not only exists, but is also the 

‘In principle, the Lucas-Stokey-Boyd results, because they rely on the Banach fixed point theorem, 
imply that the resulting U can be approximated to any degree of accuracy. In practice, this is not 
always possible. 
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unique limit of the sequence of iterates Tt;t = T,( Ttt_ ’ 5) for any initial 5 in 
the domain of the mapping.8 

The fact that U is the fixed point of a strict contraction is at the heart of our 
Theorem. The method of proof, given formally in the Appendix, is standard for 
such structures: If a contraction mapping preserves a particular property of the 
functions in its domain, and if that property holds up under the limits being 
taken, then the fixed point of the mapping must have that property.g Here, 
I show that a particular homogeneity restriction on the aggregator guarantees 
that Tw maps degree-y homogeneous functions into degree-y homogeneous 
functions. Further, the limiti of a sequence of degree-y homogeneous functions 
is itself a degree-y homogeneous function. Hence, the fixed point of the mapping 
must be a degree-y homogeneous function. 

Theorem 1. Suppose W satisfies the conditions of the Continuous Existence 
Theorem (Boyd, 1990) and is such that W(Izx, Ayy) = Ay W(x, y) for all x and y and 
all ,I > 0, for some y. Then, the recursive utilityfunction U exists and is homogene- 
ous of degree y. If W is also once-differentiable, U is consistent with balanced 
growth in the sense of Proposition 1. 

Proof: See Appendix. 

Note that the Theorem doesn’t require x to be a scalar; it applies equally to 
the cases of a single consumption good and many consumption goods. Most 
importantly, this result implies that a family of balanced-growth-consistent 
aggregators can be defined by 

W(X> Y) = 4XMY/UW, 

where u is homogeneous of degree y, and w and u together determine an 
aggregator W which satisfies the conditions of Boyd’s theorem. This is the 
‘parametric’ family of utility functions to which I referred in the introduction - 
the two parameters are u and w. 

The reader may have noticed that, since utility here is ordinal, there’s nothing 
particularly special about y as the degree of homogeneity. We could always 
render such a utility function homogeneous of degree one, for example, by an 

*The principal difference between Lucas-Stokey and Boyd is that Boyd, by utilizing weighted 
contraction techniques, allows a much larger domain for the mapping T,, one which includes both 
bounded and unbounded functions. 

‘Lucas (1978), for example, employs this method repeatedly to establish the properties of the value 
function in his asset pricing model. 

toIn the relevant topology. 
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appropriate monotone transformation. Given W(x, y) = u(x)w(y/u(x)), there’s 
always a degree-one homogeneous u” and a 5 such that @(x, y) = U”(X)~( y/ii(x)) 
corresponds to the same preferences and is homogeneous of degree one.” I keep 
the degree of homogeneity y distinct and explicit in order to maintain an 
analogy with the additive CRRA case, which can be rendered degree-one 
homogeneous only by sacrificing additivity. The set of feasible pairs (u, w) can be 
at least partially circumscribed by requirements such as W1 > 0, W2 > 0 and 
uniformly bounded time perspective. We will consider each of these restric- 
tions - as well as the other conditions of Boyd’s existence theorem - in the next 
section. 

The family has at least one familiar member, since the additively separable 
CRRA utility functions can be had by taking u to be 

u(c) = cy/y 

and w to be 

w(z)= 1 +6z. 

We’ll see shortly that this is not the only member of this family.” 
What does MRS,, t + 1 (C) look like for this family of recursive utility functions? 

Let z, stand for u(c,)- ’ U(ct+ 1, . . . ), the argument of w at date t. Suppose too that 
for now c, E R +, the case of a single consumption good.’ 3 A little algebra shows 
that when W(x, y) = u(x)w(y/u(x)), the marginal rate of substitution between 
periods t and t + 1 is given by 

u’(ct) 
MR&<,+,(C) = ____ 

w(zt) - w’(4 1 

u’(c,+1) w(z,+d -z,+1w’(z,+1) WW’ 

which combines some standard and some nonstandard features - where by 
‘standard’ I mean ‘familiar from the additive case’. The ratio u’(c,)/u’(c,+ i), for 

“Let li = ut/r, and define 5 by G(z) = w(~r)r’~. 

“One can see another additive specification by considering u(c) = c and w(z) = zd. This doesn’t 

quite fit the conditions of the Theorem, but nonetheless gives rise to a time-additive utility function 

with logarithmic momentary utility: The recursion U(c,, c2, . . ) = cl (U(c,, . )/cl)’ implies 

W,,c,, 1.. ) = (1 - 6)lnc, + S~(C,, . ..). where 0 = In(U). 

13The case of many consumption goods - in which we’d be concerned with the marginal rate of 

substitution between ci , and ci ,+1 - is a straightforward extension of what follows. Also, the 
intratemporal marginal rate of substitution between goods i and j at some date t will always be given 

simply by ui(ct)/uj(cr), where ut denotes the kth partial derivative of a. 
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example, is standard in this sense. When u is given by u(c) = c’/y, this is simply 
(c,+ i/cJIPy. The term l/w’ is standard, too, though less obviously - it’s just the 
discounting, which in the additive case is constant and equal to l/6. The term in 
w - zw’ is harder to interpret, but reflects the fact that current consumption 
really has two effects on utility - it generates a direct gain (captured by the w) 
and also affects discounting of future utility (captured in the zw’ term). 

Now, consider a balanced path with c,+ i/c, = (3 for all t. Since V and u 
are both degree-y homogeneous, V (c, + 2, c, + 3, . . . ) = Oy V (c, + 1, c, + 2, . . . ) and 
u(c,+ i) = Pu(c,). This implies that z *+ 1 = z, = z1 along a balanced path. 
Further, u’ is homogeneous of degree y - 1. The MRS thus reduces to 

MRS t,t+ l(C) = 0’ -y/w’(zl), 

which is independent of t. 
Imagine now that preferences are situated in a Ramsey model of capital 

accumulation. We have z, = V(cz,cg, . ..)/u(ci) = 6W(c1,c2, . ..)/u(c~). Along 
an optimal path, V(c1,c2, . . . ) = J(k,), where J is the value function and ke is 
initial capital. One can show that if V is degree-y homogeneous and the feasible 
set is a convex cone, then J is degree-y homogeneous as we11.14 Further, the 
optimal policy functions - which give the optimal choices of current consump- 
tion and next-period’s capital given current capital - are homogeneous of degree 
one. Let c(k) denote the consumption policy. We then have zi = fP’J(ko)/u(c(ko)) 
= @‘k&J(l)/k&u(c(l)) = @‘J(l)/u(c(l)), h’ h w ic is independent of initial capital.i5 

Thus, the rate of balanced growth determined by equating the MRS to a con- 
stant marginal product of capital is independent of initial capital. 

The theorem can be readily extended to the case where some subset of goods 
must remain constant along a balanced path - for example, in models in which 
leisure is a good and the agent has a finite endowment of time in each period. In 
such cases, an aggregator of the form 

W(c, L Y) = u(c, b4YlU(C, 0) 

will work. If c and 1 denote the scalar values of consumption and leisure, the 
aggregator gives rise to the familiar intratemporal efficiency condition 

uz(c, l)/ul (c, I) = (real wage),. 

If u is homogeneous of degree y in c, then consumption and real wages can share 
a common balanced growth rate, while leisure hours remain constant.’ ‘j 

14The proof is analogous to the proof of the Theorem above. 

‘sin the multiple goods case, z1 is independent of the scale of initial capital: letting K = (l/IJk,(\)k,, 

we have z, = ByJ(~)/u(c(~)). 

16A formal proof for the more general case is given in Dolmas (1994). 
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2.4. Restrictions on w and u 

Feasible choices of the functions w and u are constrained by both economic 
and technical considerations. From an economic standpoint, we want the 
resulting aggregator W to be such that both current consumption and future 
utility are desirable - that is, that both WI and Wz are positive.” The technical 
considerations address the existence of a utility function U given an aggregator 
W. The most basic of these is a condition referred to in Boyd (1990) as 
‘uniformly bounded time perspective’. This condition places a uniform bound on 
the rate at which the aggregator discounts future utility.‘* Since I’ve been 
implicitly assuming that W, exists, what uniformly bounded time perspective 
amounts to is that 6 E sup, Y Wz(x, y) be finite, guaranteeing that future utility 
is discounted by at least 6. l9 The constant C? plays a prominent role in the 
contraction-mapping arguments which derive the utility function U from the 
aggregator W. In the additively separable case, this bound is simply given by the 
fixed discount factor. 

We may consider what these restrictions imply for the functions u and w. To 
avoid notational clutter, let’s continue to let z stand for the argument of w, so 
z = y/u(x). Then, assuming w is differentiable, differentiation reveals that 

Wl(X, y) = u’(x) x {w(z) - zw’(z)). 

Thus, WI > 0 requires that u’(x) and w(z) - zw’(z) be either both positive or 
both negative. W, is a bit simpler, since Wz(x, y) reduces to w’(z). Thus, Wz > 0 
if and only if w is strictly increasing. 

Given that Wz is simply w’, uniformly bounded time perspective requires that 
w be such that sup{w’(z)} is finite. If w is concave, this rules out Inada-type 
conditions at zero, while if w is convex, this seems to require that w be 
asymptotically affine or linear. 

A number of ‘technical’ conditions remain to be considered, completing the 
‘conditions of the continuous existence theorem’, which guarantee the existence 
of the recursive utility function. I show in the Appendix that, for this particular 
class of aggregators, the remaining existence conditions boil down to requiring 
that W be continuous and that /PC% be less than one, where p is the maximal 
one-period growth rate of consumption and 5 = sup, w’(z). Note that this is 
simply an analogue of the familiar Brock-Gale condition for existence of 

“In fact, the desirability of current consumption is not necessary for the existence of a recursive 

utility function. See Boyd (1990). 

‘8Loosely speaking, an upper bound on the amount of patience. 

“When W, does not exist, a Lipschitz condition on W with respect to its second argument also 

suffices. See Boyd (1990). 
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optimal paths in the additive case - we have simply replaced the fixed discount 
factor 6 with the upper bound of the variable ‘discount factors’ implied by the 
aggregator.20 

2.5. Examples 

Since u must be homogeneous of degree y, the real choice here lies in selecting 
a function w. This section presents some examples of possible functions w, all of 
which can be parametrized, together with u, so as to satisfy the restrictions 
outlined in the last section. Since Boyd’s existence restrictions require that 
preferences be over consumption streams in a particular space, we need to be 
clear about what that space is. In all cases, I will assume that this space is the 
collection of all consumption streams which are dominated by some multiple of 
B = (l,fl,/P, . . . ), where fi 2 1. We can always take fl= 1 to recover the case of 
uniformly bounded consumption, but since our interest is in balanced growth, 
we’ll want to allow for /I > 1 as we11.21 

Consider first the following specification of w: 

w(z) = $[I + CYzy, 

where I assume p ~(0, 1). There is clearly no transformation of U which will yield 
an additive representation. Let us consider how the restrictions outlined in the 
previous section come into play in this case. It’s probably easiest to begin by 
looking at w’. For this specification, we have 

w’(z) = 6[1 + Z~Z]~-’ 
JZ 

or w’(z) = pqm. 

With PE(O, l), w is concave - so w(z) > zw’(z) for all z. Since WI is just 
u’ x (w(z) - zw’(z)}, W, > 0 is guaranteed if u’ > 0. Further, w’ is decreasing, 
with supr 2 0 w’(z) = w’(0) = 8, so uniformly bounded time perspective is han- 
dled quite neatly in this specification. The other existence conditionsz2 again 
simply boil down to requiring J/P’ < 1. 

Note that the ‘1’ which accounts for the lion’s share of the cumbersomeness of 
these expressions is actually quite essential. In general, some constant term like 

*‘As we’ll see in Section 3.1, /Pd c 1, together with the usual continuity and compactness conditions, 

also suffices to guarantee the existence of optimal paths in the one-good Ramsey model. 

“I’m thinking here of the case of a single consumption good. For multiple consumption goods, 

assumethatB=(b,,b *,... ),whereb,=p-‘(l,l,._. 1). 

“Contractiveness and ‘+-boundedness’, as described in the Appendix. 
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the ‘1’ must be present in this sort of specification, since we must bound the slope 
of w - either at the origin or asymptotically, depending on whether w is concave 
or convex. 

Note, too, that while this example illustrates preferences which are consistent 
with balanced growth, it has not been selected to guarantee that growth will be 
chosen by an agent with these preferences in any particular context. The next 
section shows that if an optimum exists in the one-sector Ramsey model, the 
optimal paths of consumption and capital will grow without bound whenever 
inf,f’(k) > l/infc Wz(cI, U(cz, c3, . . . )). The example above fails to satisfy this 
condition regardless off; since inf W, = 0. The following w will generate an 
aggregator with both sup W2 < + co and inf W2 > 0: 

w(z) = dz + ; [l + (5 - @ZIP. 

As the notation suggests, 4 is the infimum of w’(z). The supremum, just as in 
the example immediately above, is again C% 

Another example in this vein is 

w(Z) = ci + ez + (S- e)ln(l + 2). 

The implied aggregator has the property that the variable ‘discount factor’, W2, 
is a convex combination of 5 and 4, since w’(z) = (1; + (8 - ~?)/(l + z), or 

w’(z) = 
1 - L6 +&. 

1 +z- 

3. Optimal capital accumulation 

The last section has demonstrated that balanced-growth-consistent recursive 
utility functions are simple to construct. This section will demonstrate that they 
are fairly simple to work with. Situating these preferences in a Ramsey model of 
optimal capital accumulation, I consider two basic questions: When will optimal 
paths exist? and When will optimal paths growth without bound? Our answer to 
the latter question will be a generalization of Jones and Manuelli’s theorem on 
the existence of optimal endogenous growth (Jones and Manuelli, 1990). 

3.1. Existence of optimal paths 

In the one-sector Ramsey model with additive utility, existence of optimal 
paths is guaranteed if, in addition to continuity of the momentary utility 
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function u and production functionf, we have also /P’S < 1, where fi is the slope 
of an affine upper bound onf, y is the asymptotic exponent of u, and 6 is the fixed 
discount factor.23 This condition is typically referred to as the Brock-Gale 
condition for the existence of optimal paths (Brock and Gale, 1969). We’ll see 
that an analogous condition holds for nonadditive recursive utility of the 
balanced-growth-consistent variety, the only difference being a replacement of 
6 by 5, the upper bound on the variable discount factor inherent in the 
aggregator. 

The model is described by a production function f and an aggregator W. 
Assume that f is continuous and nondecreasing, with f(O) 2 0. Assume 
also that f has an affine upper bound with slope 8. Assume that W is of the 
form W(x, y) = u(x)w(y/u(x)) with u continuous and homogeneous 
of degree y, and w(0) nonzero. The Ramsey problem is to maximize 
U(c,,c2, . ..) = W(cr, U(c2, . . . )) subject to c, + k, <f(k,_ 1), ct 2 0 and k, 2 0 
for all t, given k,,. 

The existence result for this model is: 

Proposition 2. If, in the model described above, we have fly6 < 1, then an optimal 
path exists from any initial stock. 

Proof The method of proof is indirect, relying on the fact that existence, 
uniqueness, and continuity of the value function are sufficient to guarantee that 
optimal paths exist. To that end, we will use the following result, which is proved 
by Becker and Boyd (1993): 

Lemma. Suppose W(. ,O) is continuous on R, and there is an increasing 
continuous function p: R, + R, + with sup,{ W(f(k), 0)/p(k)} finite and 
supk{p(f(k))/p(k)} < l/6: Then, the Bellman equation has a unique continuous 
solution. 

Since continuity of u guarantees that W(x, 0) = u(x)w(O) is continuous, 
our work will be done if we can demonstrate that /?‘8 < 1 implies the existence 
of a function p satisfying the conditions of the Lemma. Since 
W(f(k), 0) = u[f(k)]w(O) =f(k)Yu(l)w(0), if p grows at least like f(k)Y, then 
sup{ W(f(k), 0)/p(k)} will be finite. This, and positivity of p, will be assured if 
p takes the form 

Ak) = 1 + (Bk)Y, 

23An affine upper bound of a functionfis simply an affine function g with g(k) >f(k) for all k. Any 
proper concave function has an affine upper bound. The function u has y as an asymptotic exponent 

if u(c) eventually grows like cY. When u is actually homogeneous of degree y, the degree of 
homogeneity and the asymptotic exponent coincide. 
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where, recall, /I is the slope of an affine upper bound on& With this p, and again 
given thatjis dominated by an affine function with slope 0, sup{~(j(k))/~(k)} 
will be less than /I’. Thus, p’s < 1 is sufficient to yield sup{~(j(k))/~(k)) < l/g 
and thus sufficient to guarantee the result in the Lemma. H 

The role of the function p in the Lemma is to eliminate the standard dynamic 
programming assumption of bounded one-period returns. Maximal one-period 
returns - W (j(k), 0) - rather than being bounded, may grow no faster than p, 
which in turn grows no faster than 8-i along feasible paths. 

Proposition 3 can be readily generalized to a multi-sector model - specifically, 
a model with m consumption goods and n capital goods produced according to 
a production correspondence, call it @, rather than a production function. 
Continuity and compact-valuedness of @ replace continuity off: The other 
assumptions - modulo obvious changes to accommodate the new number of 
goods - remain the same. In the hypotheses of the Lemma concerning the 
function p, one simply replaces W( j(k), 0) with max { W(c, 0): c feasible from k} 
and p( j(k)) with max{#): k’ feasible from k). If a p exists which satisfies the 
modified hypotheses, then optimal paths exist from any initial k. Since this result 
may be obtained from existing results in the literature and, moreover, would 
take us well beyond the intent of the present section - which is simply to 
illustrate the ease of application of balanced-growth-consistent recursive utilities 
_ I will not present the proof here.24 

3.2. A growth theorem 

I will conclude with a generalization of Jones and Manuelli’s (1990) theorem 
to the case of recursive utility. The purpose of this section is illustrative and is 
not meant to imply that balanced-growth-consistent recursive utilities are lim- 
ited in their applicability to models of this form. They may replace time-additive 
utilities in any infinite-horizon endogenous growth model, whether a model of 
‘equilibrium’ or ‘optimal’ growth. 

As in the proof of Jones and Manuelli’s theorem, I work with a set of 
necessary conditions for optimality and show that, under a joint assumption on 
preferences and technology, the marginal utility of current consumption goes to 

24The general case may be viewed alternatively as a simple generalization of Boyd’s (1990) result for 

the one-sector case or as a modification of Sorger’s result for a multi-sector reduced form model 

(Sorger, 1992, Lemma 2.9). What distinguishes Sorger’s result from our result, as well as from Boyd’s, 

is that Sorger assumes the ‘one-period return’ W(c, 0) is bounded by a function which contains 

infoirmation only about the maximal growth rate of consumption (Sorger, 1992, Definition 2.3). The 

result here, and in Boyd, allows the function which bounds the one-period return to depend both on 

maximal consumption growth and the aggregator W. Hence, Sorger’s key condition for existence is 

fib < 1, as compared with our 8’8 < 1. 
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zero along any optimal path from strictly positive initial stocks of capital. The 
method of proof is different here, however, in that the necessary conditions 
I look at are profit maximization conditions rather than Euler equationsz5 
A benefit of this approach is that it allows us to consider more general 
technologies than are allowed within the Jones-Manuelli framework - for 
example, multi-sector models, models with adjustment costs, or models with 
nondifferentiable technologies, such as Leontief models. That said, I will first 
prove the result for Jones and Manuelli’s technology, at which point it should be 
clear how one could incorporate more general technologies. 

The model which Jones and Manuelli work with is a type of one-sector 
Ramsey model with multiple capital goods and a single consumption-invest- 
ment good. The simplest way to describe the model is probably formally. If 
kc RY+ is current capital, then current output is f(k) where f has the usual 
properties of concavity, continuity and differentiability. Output is divided 
between consumption, c, and investment in next period’s capital, i. Capital 
goods are perfect substitutes on the supply side, in the sense that next period’s 
capital, k’, and investment are related by i = XI= 1 k:. To keep the notation 
simple, I have abstracted from the depreciation of capital; incorporating it 
would yield no great insights while considerably complicating the exposition. 

For now, let preferences be described by a recursive utility function U with an 
associated aggregator W. Assume that W is increasing, concave, bounded 
below, and differentiable on the interior of its domain. Assume that & = sup W2 
is finite and 4 = inf W2 is positive. 

To guarantee growth of the optimal path, suppose thatfand 4 are such that 
there is a vector of capital stocks ,& > 0 and a c* > 0 with 

f(ff)-s-’ ~ iti2c^. 
i=l 

Moreover, suppose that this inequality holds for all nonnegative scalar multiples 
of $ and c^. Stated differently, assume that the graph offcontains the ray through 
a point of the form (it, t, S-‘l)), with k positive and c^ strictly positive.26 The role 
of this assumption in guaranteeing growth will presently become clear. 

*sThe conditions will look familiar to students of turnpike theory. The seminal work in this vein is 

Weitzman (1973). 

26This assumption is weaker than Jones and Manuelli’s and is also the condition for the more 

general case. Suppose that there are n capital goods and m consumptions goods. Let the technology 

be. described by a production correspondence CD. We interpret (c, k’) E @(k) to mean that (c, k’) is 
a feasible combination of current consumption and next period’s capital, given current capital k. The 

growth condition in this case reads as follows: There are i > 0 and P ~0 with A(& S- r&) E @(A.&) for 

all I 2 0. 
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In this convex environment, one can readily show that, if an optimal path 
exists from strictly positive initial stocks, there exist supporting prices - mar- 
ginal utilities of consumption and marginal values of capital - such that the 
optimal path is ‘profit-maximizing’ at those prices in the following sense: in each 
period t the value of the one-period ‘input-output’ combination (k,_ i, ct, k,), 
consisting of capital brought into the period, consumption produced within the 
period, and capital taken out of the period, is maximal over the set of all such 
feasible combinations. 

To be precise, let (c,, k,_ I >g I denote an optimal path from k,>>O, and let 
J again denote the value function. At any date t, the profit maximization 
condition is 

wt + 4&, - pt- ,k,- 1 = max {qtc + Sip& - pt- ik}, 
k, c, k 

where the maximization is over all c, k, and k’ 2 0 with c + c y= f k: <f(k). 
In this expression, q1 is the date-t marginal utility of consumption - i.e., 
qr = W,(c, , J(k,)), if WI exists, or the corresponding supergradient of W.27 The 
vector pt is the date-t marginal value of capital - that is, pt is a supergradient, or 
derivative, if one exists, of J at the point k,. Finally, 6, = Wz(ct, f(k,)). 

Since (k, c^, S- ‘&) is a feasible choice for the maximization on the right-hand 
side of the above expression - and since any scalar multiple of this combination 
is, also a feasible choice - the profit-maximization condition can only hold if 
(k, 2, S- ‘I)) yields a nonpositive profit: 

We will show that this last inequality implies that qr, the marginal utility of 
current consumption, goes to zero over time. First, note that since W is strictly 
increasing in current consumption, and c^ is strictly positive, q,c* > 0. Also, 
6,/S 2 1 - since 4 has been defined as inf W2. Combining this information with 
the last inequality yields pt- rf > p,& for all t. Further, p,& 2 0 for all C, since the 
value function is clearly nondecreasing in capital, and iz > 0. So, the sequence 
of real numbers (~,k},“=~ is decreasing and bounded below, hence Cauchy. 
Next, take this information back to the previous inequality, which can be 

*71f F is a function from R*, say, to R, then a vector w sR* is a supergradient of F at the point x in the 
domain of F if and only if F(x) - wx 2 F(y) - wy for every y in the domain of F. Supergradients 
generalize the notion of derivatives, and will in many cases exist where derivatives fail to exist, for 
example at ‘kinks’ or boundary points. 
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rewritten as 

(p*_*jl - p,ill > qtc* > 0, vt. 

It follows that lim,q,c^ = 0 or, since c* > 0, lim,q, = 0. 
This result - that qt goes to zero along an optimal path - will hold in any 

model which yields the profit-maximization condition with which we began as 
a necessary condition for optimality. ‘* This will be the case if W is increasing in 
current consumption, proper, concave, and bounded below; if Wz exists on the 
interior of W’s domain; and if the graph of the production function or corre- 
spondence is convex with nonempty interior. *’ This leads us to the following 
more general result: 

Theorem 2. Consider a multi-sector Ramsey model with technology given by 
a production correspondence @ and preferences by a recursive utility function with 
aggregator W. Assume that @ and W satisfy the assumptions of the _precedin_g 
paragraph. If, further, there exists a k > 0 and c^>>O such that A(& S- *k)E &lk) 
for all L 2 0, then the vector of marginal utilities of current consumption goes to 
zero along any optimal path from strictly positive initial stocks. 

The result implies unbounded growth of consumption in the additive case, if 
u is strictly increasing and concave. When there are many consumption goods, q1 
is equal to Du(c,), the vector of marginal utilities of current consumption. If u is 
strictly increasing in each consumption good and concave, then q, can go to zero 
only if 11 ct (1 goes to infinity. In other words, some subset of the consumption 
goods is growing without bound. 

What about the more general case of recursive utility? Recall that 
q1 = WI@,, J(k,)). With an arbitrary aggregator W, it’s going to be difficult to 
say what happens to c, as qt goes to zero, due to the interaction between current 
consumption and future utility. But, with aggregators of the form 
W(x, y) = u(x)w(y/u(x)), the question has a simple answer - yes, we do get 
growth - provided that u is strictly increasing and concave, and w(z) - zw’(z) 
is bounded away from zero. To see this, recall that WI(x, y) is given by 
u’(x){w(z) - zw’(z)}, which we have assumed to be positive. Since u is strictly 
increasing, u’ > 0, and the assumption about w(z) - zw’(z) implies that there 

*sWhen there is more than one consumption good, 4, will be a vector. 

29The proof of this statement parallels the proofs of similar ‘supporting price’ results in the turnpike 

literature, and relies on well-known results in convex and nonsmooth analysis. [See, for example, 

McKenzie (1986) for similar results, Clarke (1983) and Rockafellar (1974) for details of the mathe- 

matics. A formal proof of the above statement, and the subsequent theorem and corollary, is given in 

Dolmas (1994).] 
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is a A > 0 with u’(x){w(z) - zw’(z)} 2 u’(x)A. Thus, q, 2 u’(cJA, so as q1 
approaches zero, u’(c,) must approach zero as well. Given the concavity and 
strict monotonicity of u, this can only occur if ct approaches + co. As with the 
additive case, if there are multiple consumption goods, analogous reasoning 
shows that llcrll approaches + co. 

In sum, we may record the following corollary to Theorem 3, which 
encompasses both the additive and nonadditive cases: 

Corollary I. If in addition to the assumptions of Theorem 3, we have 
W(x, y) = u(x)w(y/u(x)), where u is strictly increasing and concave, and 
w(z) - zw’(z) is bounded away from zero, then limsupllc,)) = + co along any 
optimal path from strictly positive initial stocks. 

3.3. Examples 

Some examples might be in order at this point. Following Jones and 
Manuelli, assume there is now also a single capital good, and let the production 
function be given by f(k) = j3k + g(k) for some concave function g 2 0. 
Assume the utility function is defined by an aggregator of the form 
W(x, y) = u(x)w(y/u(x)), with u homogeneous of degree y and w such that 
6 = sup w’ is finite and 4 = inf w’ is positive. If, in addition to continuity and so 
forth, By5 < 1, then the recursive utility function exists as does an optimal path. 
Applying the analysis above, if we also have ,!?S > 1, then the optimal path grows 
without bound. 

It’s simplest to see the growth condition at work in this example by looking at 
the balanced case, where g is identically zero, so that the feasible set is a convex 
cone. Equating the marginal rate of substitution with the marginal product of 
capital, we obtain 

e’-y/w’(zl) = p, 

where the notation on the left-hand side of this expression is exactly as in the 
previous sections -i.e., 0 is the growth rate of consumption and z1 = J(k,)/u(c,). 
We can see clearly that 0 is greater than one under our assumptions by noting: 

/3-y = Pw’(z*) 2 pij > 1. 

In this sort of setting, one can also perform rather simply a comparative 
dynamics exercise showing the dependence of 8 on the technology parameter /I. 
Since z1 is endogenous, we clearly need a second equation, in addition to the 
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Euler equation. But this is easily obtained from Bellman’s equation, 

which can be rearranged to give 

J(koMcd = wVhM1)). 

Now, k, = 8- ‘k, and J is degree-y homogeneous, so J(kO)/u(cr) = 

O-YJ(kl)/u(~I). Hence, the Bellman equation can be rewritten as 

VYZl = w(z,), 

which is our second equation. Total differentiation of the two equations - and 
elimination of dzi - gives the elasticity of &’ with respect to b as 

ZW”(Zi)/W’(Zi) -l 1 - (~Iw’(zIYw(z,)) 1 . 
In the additive case, where w” is zero, the elasticity is simply (1 - y)- ‘. The 
essential point, of course, is not that the two elasticities will be different numbers, 
but rather, that in one case the elasticity is constant, while in the other case it 
may vary. In the nonadditive recursive case, the elasticity can differ as it is 
evaluated at different values of B. Equal percentage changes in the productivity 
of capital - and one may wish to view /I here as the privately perceived 
after-tax rate of return - can have different percentage effects on the economy’s 
long-run growth rate depending on where the economy is operating at the 
time the perturbation takes place. This, of course, seems quite a natural 
result ~ in contrast to the constant elasticity implied by additively separable 
utility. 

More models of this sort-which obtain endogenous growth from some form 
of constant returns to scale in a convex environment - can be found in King and 
Rebel0 (1990) and Rebel0 (1991). 

4. Conclusion 

In this paper, I have shown how balanced-growth-consistent recursive utility 
functions can be derived from a rather straightforward homogeneity restriction 
on the aggregator. In particular, the Theorem shows how one can in practice 
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guarantee homogeneity of the recursive utility function, and hence guarantee 
constancy of marginal rates of substitution along balanced paths of consump- 
tion. A loose ‘corollary’ to the result is that W(x, y) = u(x)w(y/u(x)), with 
u degree-y homogeneous, constitutes a family of balanced-growth-consistent 
aggregators as w and u range over a feasible set of choices. This feasible set is 
defined by requirements such as the desirability of current consumption 
and future utility, bounded time perspective, continuity, as well as technical 
requirements guaranteeing the existence of the recursive utility function. 

I have also attempted to show that such preferences can be incorporated into 
the basic Ramsey model of optimal capital accumulation without much addi- 
tional complication beyond that which arises when utility is additive - at least 
for the basic existence questions. The simple analogues to the Brock-Gale and 
Jones-Manuelli conditions to which these preferences give rise will hopefully 
facilitate their use in applications. 

Obviously, though, much work remains to be done. Existence results of the 
type given in Section 3 and in the Appendix, while perhaps interesting in 
themselves, are but a starting point for real dynamic modelling. There, tractabil- 
ity, in particular the availability of useful comparative dynamics results, is 
crucial. Whether these preferences will yield such results remains to be seen. 

Appendix 

This section contains the proofs of Proposition 1 and Theorems 1. I also 
describe precisely what the restrictions guaranteeing existence of the recursive 
utility function are, and how it is that they reduce to /I’8 < 1 for our balanced- 
growth-consistent aggregators. 

A. I. Proof of Proposition I 

First, note that if a utility function is recursive, so that it has an aggregator 
representation, and homogeneous of some degree y, then the aggregator must 
satisfy W(Ix, Ayy) = IyW(x, y) for all (x, y) and all 1 2 0. This follows from 
the fact that U(K) = W(k,, U(lc2,&, . ..)) = W(lcl, AYU(c2, c3, . ..)) and 
U(K) = /VU(C) = IY W(cr, U(cz, c3, . ..)). 

Given that the U is degree-y homogeneous and W is homogeneous in the 
manner described above, it’s straightforward to show that with such an aggrega- 
tor and utility function, if W is also once-differentiable, the partial derivative 
W,(cl, U(cz,c3, . ..)) is homogeneous of degree y - 1 in (ci, c2, . ..) and 
W2(c1, U(c2, c3, . . . )) is homogeneous of degree zero in (cr, c2,c3, ,..). This is 
true for the case of multiple consumption goods as well as the case of a 
single consumption good. To see how this works, consider W, for the single- 
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consumption-good case. We have 

Wi(lct, U(&, . ..)) = lim 
W(IzCl + E, IYU(c2, . ..)) - W(ICi,PU(CZ, . ..)) 

E-+0 E 

= lY Iirn W(Cl + &/A U(c2, . .’ )) - Wh, U(c2, . . . N 
E'O & 

= ~ywl(cl, U(c2, ..~))(1/4 

= ly-lwl(cl, U(c2, . ..)). 

The consequence of these inherited homogeneity properties of WI and W2 is 
that along a path of consumption with a constant growth rate 8, WI has 
a constant growth rate By-’ and Wz is simply constant. Hence the marginal rate 
of substitution is constant along a balanced path and is given by 

A.2. Proof of Theorem I 

To understand both the proof of Theorem 1 and the subsequent section on 
restrictions constraining the choice of w and u, it’s essential to expose at least 
some of the structure of the Boyd result on which Theorem 1 relies. 

The notation is as in Becker and Boyd (1993). Let X x Y denote the domain of 
W, where X is a subset of Ry and Y is a subset of R. Boyd considers the 
one-good case - where X c R, - but the result clearly generalizes. Because of 
the recursivity, the range of W must necessarily be a subset of Y as well. Let 
A =A, xAlx ... c (R”)” such that A, c Xfor every t. Assume the topology on 
A is such that the shift operator S, defined by S(c1,c2, . ..) = (c2,cJ, . ..). and the 
projection operator rc, defined by nC = ci, are both continuous. Any topology 
at least as strong as the product topology will do. The space A is the collection of 
all possible consumption streams C. This space will typically be determined by 
the model in which the preferences are situated. For example, in the one-good 
case, if the model admits a maximal one-period growth rate of consumption - 
call it /I - then A can be taken to be the collection of all sequences C which are 
dominated by 1x(1,&/I’, . . . ) for some 2 > 0. In the language of Riesz spaces, 
this A would be the Riesz ideal generated by the sequence (1, fl, f12, . . . ). In most 
capital accumulation contexts, A can be taken to be the Riesz ideal generated by 
the path of pure accumulation. If the model is such that there is a maximum 
sustainable level of consumption C, then we may take A, = [0, C] for all t. 
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With this notation in hand, what the ‘Continuous Existence Theorem’ 
demonstrates is that U exists as the fixed point of a strict contraction when, 
in addition to W2 > 0 and sup W2(x, y) 3 $ < + 03, the aggregator satisfies: 

Continuity. W(x, y) is continuous in (x, y). 

&Boundedness. There is a positive function 4, continuous on A, such that 
sup{1 W(zC, 0)(/4(C): CEA) is finite. 

Contructiueness. Recall from above that 8 was defined as the least upper bound 
of W2. We then require $sup{&X)/&C): CEA) < 1, where 4 is the same 
function from the previous assumption. 

Becker and Boyd denote the set of continuous, &bounded functions from 
A to R by C@, which is a Banach space when endowed with the norm 11. 114 
defined by 

II Ullg = sup I I ~(C)Ild4C)~. 

It is on this space which the operator Tw of Theorem 1 lives. 
The proof of the theorem is in two simple steps. First, I show that, under the 

assumptions on W, the operator Tw takes degree-y homogeneous functions into 
degree-y homogeneous functions. Second, I show that the (pointwise) limit of 
a sequence of degree-y homogeneous functions is a degree-y homogeneous 
function. Since the iterates of Tw converge &uniformly to a unique utility 
function U from any initial point in C,, U must be degree-y homogeneous. 

Suppose that l E C, and that g is degree-y homogeneous. Then, for any C and 
A > 0. we have 

(Td)(W = W(~c,,5(~c,,...)) = w(nc,,1YaC2,.*.)) 

= AYW(CI, lxcz, . . . N = ~Y(~Wmc), 

which is just degree-y homogeneity for T,& 
The second step is fairly trivial. Suppose { f”>c= 1 is a sequence of degree-y 

homogeneous functions which converges pointwise to a limitf: For any x in the 
domain of thef”‘s andfand any A > 0, consider lf@x) - Ayf(x)(. Can this be 
nonzero? The answer is no, for consider: 

I_mx) - nyf(X)l = I.f(J.4 -f”(W +f”W - JYf(x)I 

= I_mx) -f”WI + ~Ylf”(X) -ml, 
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where the last equality comes about because the f” are assumed degree-y 
homogeneous. Because the f” converge pointwise to f, the last terms on the 
right-hand side can be made arbitrarily small by a sufficiently large choice of n. 
Thus, we must have f(Lx) = A?f(x). Since x and 1 were arbitrary, f is degree-y 
homogeneous. 

A.3. Existence restrictions on w and u 

In order to see what we must require of w and u to guarantee existence of the 
recursive utility function, we need to consider the three assumptions listed in the 
last section. 

What the continuity assumption demands is clear. As for the other two 
conditions, note first that W(nC, 0) = u(cr)w(O). For r$-boundedness then, it’s 
enough to have a 4 of the form 4(C) = 1 + u(cl) - since u(cr)w(O)/(l + u(cl)) is 
bounded above and below for all c I. As for the contraction property, this really 
only makes sense relative to the space A of potential consumption streams, 
which in turn will be model-dependent. For concreteness, suppose that the 
model in which the preferences are situated is such that there is a maximal 
long-run one-period growth rate of consumption, /I - i.e., there is a fl such that 
CEA implies maxi{cit) I Lp for some i > 0. Again using 4(C) = 1 + u(c,) the 
contraction property is satisfied if z/P < 1. 
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